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§1. In a Note under the title: Sur le développement des fonctions à une seule
variable, we have indicated many series for the development of functions, which result
from the general formula of interpolation by the method of least squares that we have
given in the Memoir under the title: Sur les fractions continues. The terms of these
series are composed of polynomials determined by the development into continued
fraction of an integral of the form ∫ b

a

θ2(z)

x− z
dz;

the denominators of the reductions which are obtained in one such development are
justly those polynomials according to which the functions are developed into series, of
which there was question in our Note.

We are going to show now a series of another kind containing the same polynomi-
als. This series does not give the approximate values of the functions under the form
of the polynomials, as the ancients did it, but it furnishes some approximate expres-
sions, with some complementary terms, of definite integrals, these expressions being
formed of some simpler integrals under a certain regard, namely: for the evaluation of
an integral of the form ∫ b

a

f0(x)f1(x)θ2(x) dx,

where figures a product of three functions

f0(x), f1(x), θ2(x),
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one obtains an approximate expression composed of integrals where figure under the
sign of integration separately the functions

f0(x)θ2(x), f1(x)θ2(x), θ2(x),

multiplied by the polynomials mentioned above.
§2. This series, just as its complementary term, are deduced easily by considering

the multiple integral

(1) T =

∫
P0S0S1θ

2
0 dx0dx1 . . . dxn,

the functions
θ0, P0, S0, S1

being determined by the formulas

(2)



θ0 = θ(x0)θ(x1) . . . θ(xn),

φ(x) = (x− x0)(x− x1) . . . (x− xn),

S0 = f0(x0)
φ′(x0) + f0(x1)

φ′(x1) + · · · + f0(xn)
φ′(xn) ,

S1 = f1(x0)
φ′(x0) + f1(x1)

φ′(x1) + · · · + f1(xn)
φ′(xn) ,

P0 = φ′(x0)φ′(x1) . . . φ′(xn).

The last equality, after the substitution of the values of φ′(x0), φ′(x1), . . . φ′(x−n), is
reduced to that which follows:

(3) P0 = ±[(x0 − x1)(x0 − x2) . . . (x0 − xn) . . . (xn−1 − xn)]2.

The limits of all the variables in the integrals that we will consider are the same,
namely: a and b.

Noting according to the structure of the functions S0, S1 that their product is equal
to a sum of terms of the form:

f0(xi)

φ′(xi)

f1(xk)

φ′(xk)
,

where

i = 0, 1, . . . n,

k = 0, 1, . . . n,

we conclude that integral (1) is decomposed into a sum of integrals:∑∫
f0(xi)

φ′(xi)

f1(xk)

φ′(xk)
P0θ

2
0 dx0dx1 . . . dxn.

This sum contains terms of two kinds, namely: 1) those in which i = k, 2) those in
which i differs from k.
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The indices i and k having in this sum all the values from 0 to n, it will have n+ 1
terms of the first kind and (n + 1)n terms of the second kind. Now, according to the
symmetry with respect to the variables

x0, x1, . . . xn,

the terms of the first kind will have the common value∫
f0(x0)

φ′(x0)

f1(x0)

φ′(x0)
P0θ

2
0 dx0dx1 . . . dxn,

representing the term which corresponds to i = 0, k = 0, and the terms of the second
kind will have the common value∫

f0(x0)

φ′(x0)

f1(x1)

φ′(x1)
P0θ

2
0 dx0dx1 . . . dxn,

representing the term which corresponds to i = 0, k = 1; therefore the integral (1) that
we will consider is decomposed in the following manner:

(4)

 T = (n+ 1)
∫ f0(x0)
φ′(x0)

f1(x0)
φ′(x0)P0θ

2
0 dx0dx1 . . . dxn

+(n+ 1)n
∫ f0(x0)
φ′(x0)

f1(x1)
φ′(x1)P0θ

2
0 dx0dx1 . . . dxn.

§3. In order to simplify the first of the integrals which enter into the second member
of this equality we will introduce some new functions θ1, Φ, P1, by putting

(5)


θ(x1)θ(x2) . . . θ(xn) = θ1,

(x− x1)(x− x2) . . . (x− xn) = Φ(x),

Φ′(x1)Φ′(x2) . . .Φ′(xn) = P1.

Comparing these equalities to the equalities (2) let us note that

(6)

{
θ0 = θ1 · θ(x0),

φ(x) = (x− x0)Φ(x).

If one differentiates the last equality with respect to x, we will have

φ′(x) = Φ(x) + (x− x0)Φ′(x);

whence, by making
x = x0, x1, x2, . . . xn,

and noting that according to (5) the values x = x1, x2,. . .xn annul the function Φ(x),
we deduce

(7) φ′(x0) = Φ(x0), φ′(x1) = (x1−x0)Φ′(x1), . . . φ′(xn) = (xn−x0)Φ′(xn).

By multiplying these equalities, we find:

φ′(x0)φ′(x1)φ′(x2) . . . φ′(xn) =
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(x1 − x0)(x2 − x0) · · · (xn − x0)Φ′(x0)Φ′(x1)Φ′(x2) . . .Φ′(xn).

As one has according to (5)

(x1 − x0)(x2 − x0) · · · (xn − x0) = (−1)nΦ(x0),

Φ′(x1)Φ′(x2) . . .Φ′(xn) = P1,

and according to (2)

Φ′(x0)Φ′(x1)Φ′(x2) . . .Φ′(xn) = P0,

the equality obtained gives us

(8) P0 = (−1)nΦ2(x0)P1.

Substituting the values of P0, θ0, φ′(x0) drawn from (8), (6), (7) in the integral∫
f0(x0)

φ′(x0)

f1(x1)

φ′(x1)
P0θ

2
0 dx0dx1 . . . dxn,

we note that it is reduced to the following:∫
(−1)nf0(x0)f1(x0)P1θ

2(x0)θ2
1 dx0dx1dx2 . . . dxn.

The functions P1, θ1 not containing according to (5) the variable x0, this integral is
decomposed into the following two factors:∫

(−1)nP1θ
2
1 dx1dx2 . . . dxn ·

∫
f0(x0)f1(x0)θ2(x0)θ2

1 dx0.

By virtue of that, designating by C the value of the integral∫
(−1)nP1θ

2
1 dx1dx2 . . . dxn,

independent of the functions f0(x)f1(x), we obtain for the determination of the first of
the integrals contained in equality (4) the formula:

(9)
∫
f0(x0)

φ′(x0)

f1(x1)

φ′(x1)
P0θ

2
0 dx0dx1 . . . dxn = C

∫
f0(x0)f1(x0)θ2(x0)θ2

1 dx0.

§4. Passing to the simplification of the integral∫
f0(x0)

φ′(x0)

f1(x1)

φ′(x1)
P0θ

2
0 dx0dx1dx2dx3 . . . dxn,

we will introduce yet three new functions, by putting

(10)


θ(x2)θ(x3) . . . θ(xn) = θ2,

(x− x2)(x− x3) . . . (x− xn) = Φ1(x),

Φ′1(x2)Φ′(x3) . . .Φ′1(xn) = P2.
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Comparing the first two of the equalities (10) to the corresponding equalities (5),
one deduces

(11)

{
θ1 = θ(x1)θ2,

Φ(x) = (x− x1)Φ1(x).

This last equality being differentiated with respect to x, gives

Φ′(x) = Φ1(x) + (x− x1)Φ′1(x);

whence, by putting
x = x1, x2, . . . xn

and noting that the function Φ1(x) is annulled according to (10) for x = x2, x3,. . .xn,
we obtain

Φ′(x1) = Φ1(x1), Φ′(x2) = (x2 − x1)Φ′1(x2), . . . ,

Φ′(xn) = (xn − x1)Φ′1(x1);
(12)

Multiplying these equalities, we find

Φ′(x1)Φ′(x2)Φ′(x3) . . .Φ′(xn) =

(x2 − x1)(x2 − x1) . . . (xn − x1)Φ′1(x1)Φ′1(x2)Φ′1(x3) . . .Φ′1(xn);

whence one draws, by virtue of the equalities (5), (10), the following expression of the
function P1:

P1 = (−1)n−1Φ2
1(x1)P2;

and consequently equality (8) gives us

P0 = −Φ2(x0)Φ2
1(x1)P2.

By substituting according to (12) Φ′(x1) instead of Φ1(x1) and replacing according
to (7) the function Φ(x0) by φ′(x0) and the function Φ′(x1) by φ′(x1)

x1−x0
, we obtain

P0 = −
(
φ′(x0)φ′(x1)

x1 − x0

)2

P2.

Now by putting this value of P0 into the integral∫
f0(x0)

φ′(x0)

f1(x1)

φ′(x1)
P0θ

2
0 dx0dx1dx2dx3 . . . dxn

and by replacing there according to (6) the function θ0 by the product θ(x0)θ1 and
the function θ1 according to (11) by the product θ(x0)θ2, we find that this integral is
reduced to the following:

−
∫
f0(x0)f1(x1)θ2(x0)θ2(x1)

φ′(x0)φ′(x1)

(x1 − x0)2
P2θ

2
2 dx0dx1 . . . dxn,
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that which one is able also to represent by

−
∫
f0(x0)f1(x1)F (x0, x1)θ2(x0)θ2(x1) dx0dx1,

where one has designated by
F (x0, x1)

the function of the two variables x0, x1, determined by the equality

(13) F (x0, x1) =

∫
φ′(x0)φ′(x1)

(x1 − x0)2
P2θ

2
2 dx2dx3 . . . dxn.

§5. By virtue of these transformations of the integrals which enter into the second
member of equality (4), it is reduced to this here

(14)

{
T = (n+ 1)C

∫
f0(x0)f1(x0)θ2(x0) dx0

−(n+ 1)n
∫
f0(x0)f1(x1)F (x0, x1)θ2(x0)θ2(x1) dx0dx1,

T being according to (1) the value of the integral∫
P0S0S1θ

2
0 dx0dx1 . . . dxn.

We are going to show now how are obtained the limits between which is found
contained the value of this integral.

According to (2) the functions S0, S1 are determined by the equalities:

S0 =
f0(x0)

φ′(x0)
+
f0(x1)

φ′(x1)
+ · · · +

f0(xn)

φ′(xn)
,

S1 =
f1(x0)

φ′(x0)
+
f1(x1)

φ′(x1)
+ · · · +

f1(xn)

φ′(xn)
.

By putting here according to (7)

Φ(x0), (x1 − x0)Φ′(x1), . . . (xn − x0)Φ′(xn)

instead of
φ′(x0), φ′(x1), . . . φ′(xn),

we note that these equalities are able to be represented under the form

(15)

 S0 = 1
Φ(x0)

[
f0(x0) − Φ(x0)f0(x1)

(x0−x1)Φ′(x1) − · · · − Φ(x0)f0(xn)
(x0−xn)Φ′(xn)

]
,

S1 = 1
Φ(x0)

[
f1(x0) − Φ(x0)f1(x1)

(x0−x1)Φ′(x1) − · · · − Φ(x0)f1(xn)
(x0−xn)Φ′(xn)

]
.

If one considers the first of these equalities, where according to (5)

Φ(x) = (x− x1)(x− x2) . . . (x− xn),

6



one notes that the expression contained between the brackets [ ] represents the the
difference between the value of the function f0(x) for x = x0 and the value that the
formula of interpolation of Lagrange gives for the determination of f0(x0) according
to the values of f0(x) for x = x1, x2,. . .xn.

The ratio of this difference to the value of

(x0 − x1)(x0 − x2) . . . (x0 − xn)

1.2. . . . n
,

do not exit, as one knows, from the limits in which the derivative remains contained

dnf0(x)

dxn

for x = x0, x1, x2,. . .xn and for the intermediate values.
Noting besides, according to that which has been admitted in regard to the limits of

integr ation, that all these values are found between a and b, we conclude that this ratio
is equal to a certain quantity M0, mean between the values of the derivative

dnf0(x)

dxn

within the limits a and b. Consequently, according to equality (15), we will have

S0 =
(x0 − x1)(x0 − x2) . . . (x0 − xn)

1.2. . . . n

M0

Φ(x0)
.

By replacing here according to (5) the product

(x0 − x1)(x0 − x2) . . . (x0 − xn)

by Φ(x0), we find the expression of S0 which, being simplified, is reduced to the
following:

S0 =
M0

1.2 . . . n
.

One finds in an analogous manner

S1 =
M1

1.2 . . . n
,

M1 being a mean among the values of the derivative

dnf1(x)

dxn

in the interval x = a, x = b.
By virtue of the equalities that we have deduced in regard to the values of the

functions S0, S1 in the integral

T =

∫
S0S1P0θ

2
0 dx0dx1 . . . dxn,
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and noting that the factor P0θ
2
0 according to (3) does not change sign, we conclude that

for certain values M0, M1 not exiting from the limits between which the derivatives
remain

dnf0(x)

dxn
,

dnf1(x)

dxn

in the interval from x = a to x = b, the following equality will take place:

(16) T =
M0M1

(1.2 . . . n)2

∫
P0θ

2
0 dx0dx1 . . . dxn.

§6. Substituting this value of T into equality (14) we obtain the equation

M0M1

(1.2 . . . n)2

∫
P0θ

2
0 dx0dx1 . . . dxn = (n+ 1)C

∫
f0(x0)f1(x0)θ2(x0) dx0

−(n+ 1)n

∫
f0(x0)f1(x1)F (x0, x1)θ2(x0)θ2(x1) dx0dx1,

whence there results the following formula for the evaluation of the integral
∫
f0(x0)f1(x0)θ2(x0) dx0:∫

f0(x0)f1(x0)θ2(x0) dx0 =∫
f0(x0)f1(x1)

nF (x0, x1)

C
θ2(x0)θ2(x1) dx0dx1

+
M0M1

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
.

(17)

It is from this formula that we draw the series which makes the object of this Note,
by developing the function

n

C
F (x0, x1)

following the terms composed of the polynomials which are obtained, as we have said
in §1, by means of the development of the integral∫

θ2(z) dz

x− z

into continued fraction and that we will designate by

ψ0(x), ψ1(x), ψ2(x), . . .

According to the known property of these polynomials, by virtue of formula (17),
it is easy to make one such development from the function

n

C
F (x0, x1)

without that it be necessary to determine the value of the integral∫
φ′(x0)φ′(x1)

(x0 − x1)2
P2θ

2
2 dx2dx3 . . . dxn,
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which gives the expression of the function

F (x0, x1)

according to equation (13).
We make note only according to this equation that F (x0, x1) is an entire function

of degree inferior to n, as much with respect to x0 as with respect to x1, as that results
from this that according to (2) the product φ′(x0)φ′(x1) is divisible by (x0 − x1)2 and
contains some powers neither of x0, nor of x1 superior to n + 1. According to the
property of polynomials

ψ0(x), ψ1(x), ψ2(x), . . .

each power of x inferior to n being able to be represented by the sum

k0ψ0(x) + k1ψ1(x) + · · · + kn−1ψn−1(x),

the function
n

C
F (x0, x1),

according to that which one has noted above in regard to the function F (x0, x1), will
be able to be represented by the sum∑

Cλ,µψλ(x0)ψµ(x1),

λ and µ remaining less than n.
By putting this sum in place of

n

C
F (x0, x1)

in formula (17), we obtain the equality∫
f0(x0)f1(x0)θ2(x0) dx0

=

∫
f0(x0)f1(x1)

∑
Cλ,µψλ(x0)ψµ(x1)θ2(x0)θ2(x1) dx0dx1

+
M0M1

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
,

which, as it is easy to understand, is able to be represented as follows:∫
f0(x)f1(x)θ2(x) dx

=
∑

Cλ,µ

∫
f0(x)ψλ(x)θ2(x) dx

∫
f1(x)ψµ(x)θ2(x) dx

+
M0M1

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
,

(18)
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By virtue of the known property of the polynomials

ψ0(x), ψ1(x), ψ2(x), . . .

to satisfy the equation

(19)
∫
ψi(x)ψk(x)θ2(x) dx = 0

for i different from k, it is not difficult to find the value of the coefficients

Cλ,µ,

which figure in this formula. In fact, if one puts

f0(x) = ψl(x), f1(x) = ψm(x),

where
l < n, m < n,

the derivatives

dnf0(x)

dxn
=
dnψl(x)

dxn
,

dnf1(x)

dxn
=
dnψm(x)

dxn

will be equal to zero. Hence, according to that which has been said in §5 in regard to
the quantities M0, M1, these here will also be equal to zero; therefore, for such values
of the functions f0(x), f1(x), formula (18) will be reduced to the equality∫
ψl(x)ψm(x)θ2(x) dx =

∑
Cλ,µ

∫
ψl(x)ψλ(x)θ2(x) dx

∫
ψm(x)ψµ(x)θ2(x) dx.

Noting according to (19) that the integrals∫
ψl(x)ψλ(x)θ2(x) dx,∫
ψm(x)ψµ(x)θ2(x) dx

are reduced to zero when λ
>
<
l, µ

>
<
m, we conclude that in the sum

∑
Cλ,µ

∫
ψl(x)ψλ(x)θ2(x) dx

∫
ψm(x)ψµ(x)θ2(x) dx

all the terms, with the exception of the one which corresponds to

λ = l, µ = m,

vanish; by virtue of which the equality deduced gives us∫
ψλ(x)ψµ(x)θ2(x) dx =

∑
Cλ,µ

∫
ψ2
λ(x)θ2(x) dx ·

∫
ψ2
µ(x)θ2(x) dx;
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whence there results for the determination of the coefficientCλ,µ the following formula

Cλ,µ =

∫
ψλ(x)ψµ(x)θ2(x) dx∫

ψ2
λ(x)θ2(x) dx ·

∫
ψ2
µ(x)θ2(x) dx

.

By making λ = µ, we find

Cλ,λ =
1∫

ψ2
λ(x)θ2(x) dx

;

while for λ
>
<
l according to equality (19) one sees that

Cλ,µ = 0;

It follows that the sum∑
Cλ,µ

∫
f0(x)ψλ(x)θ2(x) dx

∫
f1(x)ψµ(x)θ2(x) dx

contains only the terms in which λ = µ and that in these terms the coefficient Cλ,µ has
the value

1∫
ψ2
λ(x))θ2(x) dx

;

consequently equality (18) is reduced to the following∫
f0(x)f1(x)θ2(x) dx

=
∑∫

f0(x)ψλ(x)θ2(x) dx
∫
f1(x)ψλ(x)θ2(x) dx∫

ψ2
λ(x))θ2(x) dx

+
M0M1

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
,

(20)

where the summation extends, according to that which we have noted above, to the
following values of λ:

λ = 0, 1, 2, . . . n− 1.

§7. One is able also to find without difficulty the value of the expression

P0θ
2
0 dx0dx1dx2 . . . dxn

(1.2 . . . n)2(n+ 1)C
,

contains in the last term of the equality deduced.
One arrives there by putting there

f0(x) = ψn(x), f1(x) = ψn(x).

The derivatives
dnf0(x)

dxn
,

dnf1(x)

dxn
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being reduced into this case by the constant quantity, equal to ψ(n)
n (0), the quantities

M0, M1 according to that which we have said in §5 will be equal also to ψ(n)
n (0);

consequently for
f0(x) = ψn(x), f1(x) = ψn(x)

formula (20) will give∫
ψ2
n(x)θ2(x) dx =

∑ [
∫
ψn(x)ψλ(x)θ2(x) dx]2∫
ψ2
λ(x))θ2(x) dx

+
[ψ

(n)
n (0)]2

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
,

The number λ being less than n, according to that which one has seen in the pre-
ceding §, the integrals of the form∫

ψn(x)ψλ(x)θ2(x) dx,

which figure under the sign of the sum are reduced to zero by virtue of (19) and we find∫
ψ2
n(x)θ2(x) dx =

[ψ
(n)
n (0)]2

∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
.

This equality gives us∫
P0θ

2
0 dx0dx1 . . . dxn

(1.2 . . . n)2(n+ 1)C
=

∫
ψn(x)ψλ(x)θ2(x) dx

[ψ
(n)
n (0)]2

,

this which, being substituted into formula (20), reduces it to the following∫
f0(x)f1(x)θ2(x) dx =

∑∫
f0(x)ψλ(x)θ2(x) dx

∫
f1(x)ψλ(x)θ2(x) dx∫

ψ2
λ(x))θ2(x) dx

+
M0M1

[ψ
(n)
n (0)]2

∫
ψ2
n(x0)θ2(x0) dx0,

where the sum represents n terms of the series∫
f0(x)ψ0(x)θ2(x) dx ·

∫
f1(x)ψ0(x)θ2(x) dx∫

ψ2
0(x)θ2(x) dx

+

∫
f0(x)ψ1(x)θ2(x) dx ·

∫
f1(x)ψ1(x)θ2(x) dx∫

ψ2
1(x)θ2(x) dx

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+

∫
f0(x)ψn−1(x)θ2(x) dx ·

∫
f1(x)ψn−1(x)θ2(x) dx∫

ψ2
n−1(x)θ2(x) dx

which gives the approximate value of the integral∫
f0(x)f1(x)θ2(x) dx,
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and the expression
M0M1

[ψ
(n)
n (0)]2

∫
ψ2
n(x0)θ2(x0) dx0

represents its complementary term.
Noting according to that which one has seen in §5 that the numerical value of the

quantities M0, M1 does not surpass the greatest numerical value of the derivatives

dnf0(x)

dxn
,

dnf1(x)

dxn

within the limits of integration and designating these numerical values maxima by A
and B, we conclude that the numerical value of the complementary term

M0M1

[ψ
(n)
n (0)]2

∫
ψ2
n(x0)θ2(x0) dx0

not surpass the value of

AB

[ψ
(n)
n (0)]2

∫
ψ2
n(x0)θ2(x0) dx0.

As for the sign of the complementary term it is determined easily in the case where
the derivatives

dnf0(x)

dxn
,

dnf1(x)

dxn

do not change in sign within the limits of integration.
In this case, according to §5, the quantities M0, M1 will have the signs of the

derivatives
dnf0(x)

dxn
,

dnf1(x)

dxn

within the limits of integration, and hence the complementary term

M0M1

[ψ
(n)
n (0)]2

∫
ψ2
n(x0)θ2(x0) dx0,

seeing that the quantities∫
ψ2
n(x0)θ2(x0) dx0, [ψ(n)

n (0)]2,

are evidently positive, will have the sign + or − according as these derivatives conserve
some signs equal or contrary within the limits of integration.
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