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Nos sequimur probabilia, nec ultra quam id, quod
verisimile occurrerit, progredi possumus; et refellere

sine pertinacia, et refelli sine iracundia, parati sumus.
TUSCULAN. 2. Book 2, §2.1

§I.

The method of least squares is so frequently employed today in the sciences of ob-
servation, that all that which is able to render the applications more sure becomes of
great interest, as simple as it is besides. This consideration has made writing the follow-
ing researches which have for object to modify the ordinary calculus of the probability
of errors, not in the case where the observations are known only a great magnitude,
but in the case much more multiplied where the observations give at the same time
unknown magnitudes, linked by some equations with the observed magnitude. In other
times, when the method was little used in France, and regarded, because of the long
calculations that it requires, more as a scholarly curiosity than as a real instrument of
the observer, the profound modification recognized in the probability was able to ap-
pear only of a secondary importance; but, at present, it seems truly useful to signal the
faultiness of the ordinary calculus, for it touches in some works more numerous each
day, and the observers, being able to sacrifice precious time to the verification of the-
ories prone to raise difficulties, are obliged to accept the practical rules on the faith of
their advancers, especially when those are men of great and just authority in science.
∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-

sity, Cincinnati, OH. June 20, 2010
1We follow probabilities, nor are we able to go beyond that which may occur having the appearance of

truth; and refute without persistance, and we are prepared to be refuted without anger.
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There would be perhaps more of a defect to raise in the applications of the method
of least squares: it will be however question here that the one who strikes most often
the eyes, and of which here is the indication so simple, that in the first words everyone
will encounter the existence of it, although the modifications that it requires are able to
impose an analytic work rather complicated.

One knows that the method invented by Legendre, around fifty years ago, and pub-
lished for the first time in his Nouvelles Méthodes pour la détermination des orbites
des comètes, in-4◦, 1805, is reduced to multiply each of the equations of the first de-
gree formed between the magnitude observed and the unknowns, by the coefficient of
each of these successive unknowns; to add the products given by coefficients of the
same unknown, this which furnishes as many new equations as unknowns; finally to
resolve these equations in the ordinary manner. The solutions thus obtained enjoy the
property of containing only the least errors possible for a given probability. It is not
an absolute minimum, as one has seemed to believe very often, but it is a minimum
relative to the errors of observation and to the mode chosen for the combination of all
the equations which they furnish. There would be able to be found other combinations
more advantageous, and there would be to discuss them according to the cases.

The calculation of the magnitude of the existing errors and of the probability that
they are able to have, is made according to the ordinary rules of the theory and entail
only some analytic difficulties.

When there enters only one unknown in the equations, this calculation is exact, at
least as to the theoretic foundations. But when there are many unknowns, the given
rules in order to calculate the error and the probability of each of them furnish only
the error and the probability that it would be able to have if it were alone, and some
magnitudes that make the errors of the others.

Now, one of the first principles of the theory of probabilities, is that, when many
events arrive simultaneously, the probability of the concurrence of these events is the
product of the probabilities of each. So that the probability of the concurrence is infe-
rior to the probability of each event taken apart: it is so much smaller, as there are more
events.

Evidently, it is likewise of the errors of many unknowns; the probability that these
errors remain all the time within certain limits is able to be only the product of the sep-
arated probabilities that each do not deviate from its proper limits, and, consequently,
this probability of concurrence of the errors of limited magnitude must be notably in-
ferior to the probability of the limits of each error considered in isolation, whatever the
others are able to be.

It is therefore an imperfection that to assign as probability of error of an unknown
making part of a system to determine, that which it would have if it were alone, instead
of giving some rules in order to calculate the probability of the set of errors of the
system which are not able, in reality, to be isolated from one another.

This defect becomes more evident still when one pays attention that the probability
relative to a limit of error is so much greater, as the extent limited by this limit is
greater: so that, if one wishes to conserve to the set of errors a little higher probability,
it will be necessary to assign to each error some more extended limits than those which
would require the same probability of the unknown were alone. Then therefore if one
be stopped at these last limits, one has really only a very weak probability that they
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are not passed. One will see, indeed, in that which follows, that it suffices with two
unknowns in order that the extent of the errors be doubled for one same probability.
The usual rules are born thence from the quite inexact ideas out of the knowledge of
the unknown magnitudes that one is proposed to deduce from the observations, and
they mislead at the same time on the value of these observations, in the same way as
out of the number of good observations that it would be indispensable to make in order
to arrive to an assigned result.

If it is permitted, on the subject of this number, of this multiplicity of the obser-
vations, quite extended from good observations, to remark that this is a domineering
condition of human knowledge when the precision is not absolute. For men seek im-
mediately so much of things, as the probability of concurrence of exact values of all
these things is able to become very great only by the immense magnitude of the number
of observations. It is, indeed, that magnitude and the continual repetition of the ordi-
nary circumstances of life which sets beyond doubt the practices of common sense;
and all the effectiveness of a sophism consists most often only to steal the view of the
real multiplicity of the facts from a daily experience, by making believe in an artificial
multiplicity of events possible without doubt, but which never arrive so to speak.

The defectiveness one time indicated, one sees that the concern is no longer to
modify conveniently the demonstration of the methods, finally to calculate, no longer
the probability of error of one unknown, but the probability of the set of errors. It was
here to choose among the demonstrations.

To speak properly, Legendre has not given it at all. Only he endorses his process
rather solidly on the advantages that it makes evident, and he insists principally on this
that the arithmetic mean of the observations, that one takes ordinarily with confidence,
is precisely only a particular case of the method of least squares.

It was Mr. Gauss who who first attached this method to the calculation of prob-
abilities, some years after the publication of Legendre, and it was also in a work of
Astronomy: Theoria motus corporum cœlestium, in-4◦, 1809. The demonstration that
Mr. Gauss gives reposes on the reciprocal of the remark by Legendre, that the arithmetic
mean is deduced from his method, when this mean is able to take place. Reciprocally, if
the arithmetic mean adopted generally is necessary, says Mr. Gauss, there results from
it that a certain law of probability is necessary, and that the sole process to follow in
order to combine the equations furnished by observation is the process which renders
a minimum the sum of the squares of these equations. But one must agree that the hy-
pothesis of the necessity to take the arithemtic mean of a mass of facts in order to obtain
the most exact possible result, is totally gratuitous, and it could no longer could be ad-
mitted a priori as the same hypothesis of the necessity of the minimum of the squares.
There is therefore thence only a proof restricted to the particular cases where the law of
probability of errors, which always leads to the arithmetic mean, is encountered in the
observations; and this is that which arrives very often by the nature of things. But, as
one does not know most ordinarily, there exists no truly solid demonstration. Also, in a
much more recent work, dedicated exclusively to the method of least squares, Theoria
combinationis observationum minimis erroribus obnoxiæ, in-4◦, 1823, Mr. Gauss has
founded on some other considerations the use of this method. These are however only
the considerations, and not the proofs; and one finds real demonstration only in the
later works of Laplace.
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It is in a Memoir published in 1811, that Laplace showed that, when the number
of observations is large enough, the most restricted errors probably are given by the
method of least squares. This Memoir is found among those of the Académie des Sci-
ences for 1811, and it has been reproduced in the Théorie analytique des Probabilités,
which appeared in 1812. The principles of the demonstration of Laplace are sheltered
from all objection: the analytic means are able alone to raise some. They have each
not at all the desirable rigor, and perhaps, in the applications, it would be acceptable
to discuss well the particular cases which would be able to be presented. But, when
one reflected that it permitted most often of some observations, added or subtracted,
in order to render to the analytic expressions each their value, one recognized that the
analysis of Laplace satisfied completely the general demonstrations. It is this analy-
sis which will be employed in that which is going to follow, in order to supplement
the omission of the probability of the concurrence of the diverse errors in the case of
many unknowns, which presents itself nearly always. Only there will be made some
simplifications, drawn especially from the beautiful work of Laplace and Mr. Gauss. If
both have neglected this consideration of the concurrence of events, which increase so
strongly the magnitude of the possible errors with a determined probability, they have
at least furnished all the means to calculate it.

It would have been without doubt very useful to enter into more practical details
and to give many examples of the calculations; but each application of this kind would
require a rather long time.

One will see however how the probability of 1 million against 1 assigned by Laplace
to the possible errors of the mass of Jupiter, of which he fixed the limit to 1

100 of the
value, must be reduced to 1160 against 1; even by supposing, as he has done, that the
number of the equations employed, 129 only, permit applying the formula of approxi-
mation, and required not the addition of the terms habitually neglected. This diminu-
tion of the calculated probability suffices also, if one pays attention to the other defects
which the 129 equations are able to contain, in order to make to cease the surprise that
one had had to experience when it has seemed necessary to modify by 1

50 the mass
which seemed definitely calculated with a double precision. The new formulas put
therefore here the calculation of the probabilities sheltered from the reproaches which
have been able to be made to it a little hastily with this occasion. It is very probable
that, in the other cases where this calculation appeared with defect, one would find
equally the cause in some omission of the analysis or of the observation.

§II.

The application of the method of least squares supposes that a great number n of ob-
servations has given some results ω1, ω2, . . . , ωh, . . . , ωn which would have been able
to be calculated in advance as linear function of many elements x1, x2, . . . , xi,. . . , xm
in number m, if these elements were known. Each observation furnishes then between
the observed value and the corresponding calculated value, an equation such that

(1) a1,hx1 +a2,hx2 + · · ·+ai,hxi + · · ·+am,hxm = ωh,

which is reported to the hth observation. The coefficients ai,h are known quantities,
independent of the elements x1, x2, etc. The indices of which they are affected mark the
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unknown and the equation to which the coefficient belongs. Thus, a3,7 is the coefficient
of the third unknown in the seventh equation.

The equations in number n that represent the expression (1) contain only m un-
knowns, it suffices that there is found m of them which do not return the ones into the
others, in order that one is able to resolve them by the ordinary process. But as the
observation does not give rigorously the value of the observed magnitude and as some
error is always joined, it is clear that it will be more advantageous to make serve, by
any combination, all the equations obtained in the determination of the unknowns, that
there would not be able to be chosen m of them, perhaps without good motives. Good
sense suffices, indeed, in order to presume that, in the reunion of so many values of
which the errors are in all possible senses, some compensation will be made which will
assure to the unknowns more exact values than the solutions of m isolated equations.

The most ordinary combinations of the equations of the first degree return to add
them after having multiplied them respectively by some arbitrary factors, which serve
to extricate the unknowns in being lent to diverse transformations. Calling Ki,1 the
factor destined to the hth equation, one obtains a sum of equations such that

(2) x1S.Ki,hai,h + x2S.Ki,ha2,h + · · ·+ xiS.Ki,hai,h + · · ·= S.Ki,hωh,

and one will have immediately xi if one subjects the n factors Ki,1, Ki,2,. . . ,Ki,n to the
conditions after this, which render null the coefficients of all the unknowns, excepting
the coefficient of xi which they reduce to unity:

(3)



S.a1,hKi,h=a1,1Ki,1+a1,2Ki,2+ · · ·+a1,hKi,h+ · · ·+a1,nKi.n=0,
S.a2,hKi,h=a2,1K2,1+a2,2Ki,2+ · · ·+a2,hKi,h+ · · ·+a2,nKi.n=0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S.ai′,hKi,h=ai′,1Ki,1+ai′,2Ki,2+ · · ·+ai′,hKi,h+ · · ·+ai′,nKi.n=0,
S.ai,hKi,h = ai,1Ki,1 + ai,2Ki,2 + · · ·+ ai,hKi,h + · · ·+ ai,nKi.n =1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S.am,hKi,h=am,1Ki,1+am,2Ki,2+ · · ·+am,hKi,h+ · · ·+am,nKi.n=0.

There remains then in equation (2) only

xi = S.ωhKi,h.

It is necessary to remark that the factors Ki,h being in number n are not determined
at all by the conditions (3), since these conditions are only in number m.

By taking another system of n factors, which one would designate likewise by
Ki,h one would obtain similarly the value of the first unknown xi, provided that one
submitted the n factors Ki,h to m conditions similar to the conditions (3) which report
to the unknown xi.

The m unknowns will be therefore furnished by m systems of n factors, determined
in part by m systems of conditions completely similar, and in number m for each un-
known element. As the factors of a system do not enter into the others, the m2 con-
ditions will determine only an equal number of factors out of the mn employed, and
n−m will be independent in each system.
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It is from these factors remained arbitrary that one will arrange in order to render
the values

xi = S.ωhKI,h

the most exact possible; and it is this for why it is necessary to resort to the calculus of
probabilities, under any form that one disguises it.

Effectively, the value of the coefficients Ki,h, whatever one wished to fix it, would
modify by nothing the value found for xi in function of these arbitraries, if the equations
were rigorously exact. But, since it attaches always some error more or less great to
the result of an observation, it would be necessary, in order to have some rigorous
equations, to subtract from all the quantities ωh the respective errors εh of which they
are affected. One is not able, and the sum

xi = S.ωhKi,h

remains affected subsequently with an error

ri = S.εhKi,h.

The magnitude of this error will depend, one sees, on the choice of the coefficients
K, and at the same time, on the law of probability of the possible errors, which will
rule in the course of the observations.

There would be to make more than one remark on that which one must understand
by this law of probability, and on the means to take the place of the ignorance where
the observer is often found in this subject. But it is necessary to be limited here to the
unique point in discussion. The law of errors εh will be supposed known.

Each of the values found for the unknowns x1, x2, . . . , xm will be sullied by an error
r1, r2, . . . , rm respectively, which will be presented under the form which comes to be
assigned to the error ri of the element xi:

(4)


r1=S.εhK1,h,
r2=S.εhK2,h,
r2=S.εhK2,h,
. . . . . . . . . . . .
rm=S.εhKm,h,

The magnitude of each of these errors will result from that which it is being pre-
sented during the observations one system of errors ε1, ε2, ε3, . . . , εh, . . . , εn rather
than another, and one sees that all the errors r will be modified at the same time by the
changes that the system of errors ε will be able to undergo. Each of the errors ε is un-
known; but if the law is known, that is if one knows that to each error ε corresponds a
certain probability, the probability of a given system ε1, ε2, . . . , εn of errors in the set of
observations will be also known and equal to the product of the unknown probabilities
of each.

This product will be therefore the probability of the system (4) of errors r1, r2, . . . ,
rm since these are all determined as soon as the errors εh of each observation receives
given values.
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Designating by φε the function which expresses the probability of the error ε , so
that φεdε is this infinitely small probability, one will have, between the limits in which
the errors are able to be extended, ∫

φεdε = 1,

since it is the sum of the probabilities of all the possible cases. Moreover, if one calls
µβ the mean of the powers β of all the possible errors, one will have∫

ε
β dεφε = µε ,

For example, the mean of all the possible errors will be expressed by

µ1 =
∫

ε dε φε;

the mean of their squares by

µ2 =
∫

ε
2 dε φε, etc.

The probability of a system of values r1, r2, . . . , rm being the probability of the set
of values ε1, ε2, . . . , εn of which they are composed, will be expressed by the product

φε1 dε1×φε2 dε2×φε3 dε3×·· ·×φεn dεn.

There remains no more than to determine the systems of values of the quantities
ri for which this product is greatest, and beyond some limits of which it becomes as
soon as not very probable that these quantities are able to be found. One will arrive
evidently there if one employs the process of Laplace, which consists in multiplying it
by a function of the errors r1, r2, . . . , rm and of their components ε1, ε2, . . . , εn such
that the subsequent integration, taken in all extent of the probability, leaves to subsist
only the sum of the values corresponding to certain given magnitudes of r1, r2, . . . ,
rm. This process, of which Laplace has so much repeated the use without varying the
form of it, is at base the same that Fourier, and more recently Mr. Lejeune-Dirichlet,
have reproduced in another manner and with a so great success. In following Laplace,
instead of forming first the necessary restrictive function, one will consider the product

P = n

∫
dε1 φε1×dε2 φε2×·· ·×dεh φεh×·· ·×dεn φεn

× eα1
√
−1(ε1K1,1+ε2K1,2+ε3K1,3+···+εnK1,n)

× eα1
√
−1(ε1K2,1+ε2K2,2+ε3K2,3+···+εnK2,n)

· · · · · · · · ·

× eα1
√
−1(ε1Ki,1+ε2Ki,2+ε3Ki,3+···+εnKi,n)

· · · · · · · · ·

× eα1
√
−1(ε1Km,1+ε2Km,2+ε3Km,3+···+εnKm,n),
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which contains by exposing the errors of m unknowns

ri = ε1Ki,1 + ε1Ki,2 + · · ·+ ε1Ki,n = SεhKi,h,

multiplied each by a special argument αi, which is able to permit to distinguish it after
the multiple integration, taken for all extent in which the errors ε are possible. If, after
this integration relative to ε , one wishes to take account of the product P, it will be
necessary to represent it as being no longer function but of r, and under the form

P = m

∫
dr1dr2 . . .drmΦ(r1,r2, . . . ,rm)er1α1

√
−1+r2α2

√
−1+···+rmαm

√
−1,

an expression in which the function Φ will be such, that it will reunite the probabilities
relative to some equal values of the system of errors r. It is really this function, multi-
plied by the differential product dr1dr2 . . .drm, which is the probability of this system
of errors, and, if one knew it, there would be no more but to integrate within the conve-
nient limits in order to obtain the sought probability. In order to determine the function
Φ, it suffices to multiply P successively by a series of m integrals of the form

1
2π

∫
∞

−∞

dαie−r1α1
√
−1

for one knows that

1
2π

∫
∞

−∞

dαie−r1α1
√
−1
∫

duΦ(u)eαiu
√
−1 = Φ(ri).

If therefore one repeats this nearly mechanical operation for all the arguments αi
and the errors ri, in number m, one will obtain the law of probability of these errors.
This will be the result Q that is here:

Q =
1

(2π)m m

∫
∞

−∞

dα1dα2 . . .dαmer1α1
√
−1+r2α2

√
−1+···+rmαm

√
−1×P.

Hence, Qdr1dr2 . . .drm will be the probability of the system r1, r2, . . . , rm of the
errors of the unknowns x1, x2, . . . , xm; and integrating between the limits which contain
the magnitudes of these errors of which one will wish to know the common probability,
one will obtain easily this probability, which will be

p = m

∫
dr1dr2 . . .drmQ.

One is able to easily recognize, if one wishes, the composition of the restrictive
function which has been introduced only successively, and it would be superfluous to
be stopped. There remains to pursue the successive integrations.

To this effect, one modifies the product P by reuniting in the exponent all the terms
which refer to one same observation, and separating the integrals relative to ε1, ε2, . . . ,
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εn, one has

P =
∫

dε1φε1 eε1(α1K1,1+α2K2,1+α3K3,1+···+αmKm,1)
√
−1

×
∫

dε2φε2 eε2(α1K1,2+α2K2,2+α3K3,2+···+αmKm,2)
√
−1∫

dεhφεh eεh(α1K1,h+α2K2,h+α3K3,h+···+αmKm,h)
√
−1

×·· · · · ·∫
dεnφεn eεn(α1K1,n+α2K2,n+α3K3,n+···+αmKm,n)

√
−1

Isolating one of these n integrals, one is able to write∫
dεhφεh eεh

√
−1Σ.Ki,h ,

and likewise, finally for brevity, one is able to represent ΣαiKi,h, a sum composed of m
terms, by Sh, at least provisionally; one is able also to suppress the index h of ε , which
has been employed only for clarity. One will have, by developing the exponential,∫

dεφε eεSh
√
−1 =

∫
dεφε

(
1+ εSh

√
−1−

ε2S2
h

2
−

ε3S3
h

6

√
−1+

ε4S4
h

24
+ · · ·

)
,

and, by integrating relatively to ε , which is explicit throughout, one will have

1+µ1Sh
√
−1−

µ2S2
h

2
−

µ3S3
h

6

√
−1+

µ4S4
h

24
+ · · · ,

because of ∫
dεφε = 1 and

∫
ε

β dεφε = µβ .

One will be able next to restore this series in exponential, this which gives

eµ1Sh
√
−1−

S2
h

2
(µ2−µ

2
1 )−

S3
h

6
(µ3−3µ2µ1+2µ

3
1 )
√
−1+

S4
h

24
(µ4−4µ3µ1−3µ

2
2 +12µ2µ

2
1−6µ

4
1 )+· · ·

Nothing will be more easy, one sees it, than to suppose the law of probability φε

variable from one observation to another, and to conserve this distinction in the rest of
the calculus. But one will recognize soon that the method of least squares reposes on
this hypothesis, that the means µ1 and µ2 of the possible errors ε and of their squares,
not varying from one observation to another; so that the variation of the law of prob-
ability, reduces to the means of the superior powers, would have little interest in the
actual question. It will be not therefore be taken account of it at all.

Under this hypothesis, the product P being formed of all similar integrals, will be
presented under the form

P = eµ1(S1+S2−···+Sn)
√
−1− µ2−µ2

1
2

(S2
1 +S2

2 + · · ·+S2
n)−·· · ,
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the third and fourth terms of the exponent being likewise

− µ3−3µ2µ1 +2µ4
1

6
(S3

1 +S4
2 + · · ·+S3

n)
√
−1

+
µ4−4µ3µ1−3µ2

2 +12µ2µ2
1 −6µ4

1
24

(S4
1 +S4

2 + · · ·+S4
m).

If one examines at present each of the series which enter inter the different terms,
one will see without difficulty that each variable αi is multiplied in the one of them
by all the factors Ki,h corresponding to the same unknown xi or to the same error ri.
They will be able therefore to be reunited under the symmetric forms, and, in order to
be more clear, it will be lawful to attribute to the sums which comprehend n terms the
sign S more specially, and to those which will contain only m, the sign Σ. One is able
to observe that the first are those where the order of the observations in number n will
bring forth so many different letters; and that the second are those which, depending
on the order of the unknowns xi in number m, could comprehend only this last number
of letters.

One has thus, as previously,

Sh = α1K1,h +α2K2,h + · · ·+αiKi,h + · · ·
+αmKm,h = ΣαiKi,h,

where the sum Σ is relative to the index i, which itself varies only from 1 to m, the
number of unknowns. There results from it, for the sum of the first powers of Sh,

S1 +S2 + · · ·+Sh + · · ·+Sn = ΣαiKi,1 +ΣαiKi,2 + · · ·
+ΣαiKi,h + · · ·+ΣαiKi,n,

that one would be able to write S(σαiKi,h), the finite sum S reporting back to the index
h.

It is quite easy to see that

S(ΣαiKi,h) = Σαi(Ki,1 +Ki,2 + · · ·+Ki,h + · · ·+Ki,n)

= αi(SKi,h +α2S2,h + · · ·+αmSKm,h

= Σ(αiSKi,h).

Likewise, because of

S2
h = (α1K1,h +α2K2,h + · · ·+αmKm,h)

2 = (ΣαiK2
i,h

= α
2
1 K2

1,h +α
2
2 K2

2,h + · · ·+α
2
mK2

m,h

+2α1K1,h(α2K2,h +α3K3,h + · · ·+αmKm,h)

+2α2K2,h(α3K3,h + · · ·+αmKm,h)

· · · · · ·
+2αm−1Km−1,h×αmKm,h,
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one has

S2
1 +S2

2 + · · ·+S2
h + · · ·+S2

n

= α
2
1 (K

2
1,l +K2

1,2 +K2
1,3 + · · ·+K2

1,h + · · ·+K2
1,n)

= α
2
2 (K

2
2,l +K2

2,2 +K2
2,3 + · · ·+K2

2,h + · · ·+K2
2,n)

· · · · · ·
= α

2(K2
m,l +K2

m,2 +K2
m,3 + · · ·+K2

m,h + · · ·+K2
m,n)

= 2α1α2(K1,lK2,1 +K1,2K2,2 + · · ·+K1,hK2,h + · · ·+K1,nK2,n)
= 2α1α3(K1,lK3,1 +K1,2K3,2 + · · ·+K1,hK3,h + · · ·+K1,nK3,n)
· · · · · ·
= 2αiαi′(Ki,1Ki′,1 +Ki,2Ki′,2 + · · ·+Ki,hKi′,h + · · ·+Ki,nKi′,n)

· · · · · ·
= 2αm−1αm(Km−1,1Km,1 + · · ·+Km−1,hKm,h + · · ·+Km−1,nKm,n),

or, for brevity,

= α
2
1 (SK2

1,h +α
2
2 (SK2

2,h +α
2
3 (SK2

3,h + · · ·+α
2
m(SK2

m,h

+2α1(α2SK1,hK2,h +α3SK1,hK3,h + · · ·+αmSK1,hKm,h)

+2α2(α3SK1,hK3,h + · · ·+αmSK2,hKm,h)

· · · · · ·
+2αm−1αmSKm−1,hKm,h.

Here the sums of the products are able to be as easily designated as the sums of the
powers, since there is in each sum only a single variable. One would abbreviate yet
further by writing

Σ(α2
i SK2

i,h +2Σ(αiαi′SKi,hKi′,h),

by having care, in order to form the second sum Σ, by taking the indices i and i′ only
under the condition i < i′, or else by erasing the coefficient 2 which precedes it.

Passing to S3
h, it is clear that, following the analogous remarks

S3
1 +S3

2 + · · ·+S3
h + · · ·+S3

n

=α
3
1 SK3

1,h +α
2
2 SK3

2,h + · · ·+α
3
mSK3

m,h

+3α
2
1 (α2SK2

1,hK2,h +α3SK2
1,hK3,h + · · ·+αmSK2

1,hKm,h)

+3α
2
2 (α1SK2

2,hK1,h +α3SK2
2,hK3,h + · · ·+αmSK2

2,hKm,h)

· · · · · ·
+α1α2α3SK1,hK2,hK3,h + · · ·+αiαi′αi′′SKi,hKi′,hKi′′,h + · · ·

+αm−2αm−1αmSKm−2,hKm−1,hKm,h

=Σ(α3
i SK3

i,h)+3Σ(α2
i αi′SK2

i,hKi′,h)+6Σ(αiαi′αi′′SKi,hKi′,hKi′′,h).

11



It is nearly useless to say that it is necessary to understand by the sums Σ relative
to the indices i, when they are applied to the products, all the possible combinations,
without double use.

Arriving finally to S4
h, one will have absolutely in the same manner,

S4
1 +S4

2 + · · ·+S4
h + · · ·+S4

n = S(ΣαiKi,h)
4

=S

 Σα4
i K4

i,h+4Σα3
i αi′K3

i,hKi′,h +6Σα2
i Ki,hK2

i′,h
+12Σα2

i αi′αi′′K2
i,hKi′,hKi′′,h

+24Σα2
i αi′αi′′αi′′′K2

i,hKi′,hKi′′,hKi′′′,h


= Σ(α4

i K4
i,h+4Σ(α3

i αi′SK3
i,hKi′,h)+6Σ(α2

i α2
i′SK2

i,hK2
i′,h)

+12Σ(α2
i αi′αi′′SK2

i,hKi′,hKi′′,h)

+24Σ(α2
i αi′αi′′αi′′′K2

i,hKi′,hKi′′,hKi′′′,h).

It was useful to show the forms of the third and fourth terms of the exponent,
although one was able to understand for what very different motives they are neglected
in the applications.

By designating by T1, T2, T3, T4 the terms of the exponent of e, which come to be
developed, the product P is able to be written

P = eT1
√
−1− 1

2 T2− 1
6 T3
√
−1+ 1

24 T4+···

= eT1
√
−1− 1

2 T2

(
1− 1

6
T3
√
−1+

1
24

T4 + · · ·−
1

72
T 2

3 + · · ·
)
,

by stopping at the terms of the fourth degree in αi, as previously.
There will remain therefore no more to integrate than relative to these variables, in

order to obtain the function Q, which is presented under the form

Q =
1

(2π)m m

∫
∞

−∞

dα1dα2 . . .dαm e−Σr1α1
√
−1−r2α2

√
−1−···−rmαm

√
−1×P

=
1

(2π)m m

∫
∞

−∞

dα1dα2 . . .dαm e−Σriαi
√
−1+

√
−1µ1Σ(αiSKi,h)− 1

2 T2

(
1−
√
−1
6

T3−·· ·
)
.

It is clear that the first powers of α can be put in common factor, and that the
exponent of e is equal to

−αi
√
−1(r1−µ1SK1,h)−α2

√
−1(r2−µ1SK2,h)−·· ·

−αm
√
−1(rm−µ1SKm,h)−

1
2

T2.

Laplace and many other geometers have supposed the mean µ1 reduced to zero.
But this condition simplifies too little the calculations, and it requires in some sort to
begin them when this mean is not able to be considered null. One alleges, indeed, that,
in a system of of well directed observations, this mean µ1, which is a true constant
error, had to be recognized and subtracted from the observed values. Is it not possible,
on the contrary, that one makes the observations only in order to determine the constant
errors, and that one must conserve µ1, which is then the sought thing. Here, in order

12



to conserve the facility to take this mean again, although the research of its value,
according to the same observations, must not be a subject of examination, it will suffice
to reduce to a single letter the terms of the form ri− µ1SKi,h. One will introduce thus
instead of the errors r of other quantities which will differ from them only by constant
quantities. One is able to write, for example,

(5) ri−µ1SKi,h +ρi

√
2(µ2−µ2

1 );

so that an error ri will be calculated by the relation

ri = µiSKi,h +ρi

√
2(µ2−µ2

1 ),

and
dri = dρi

√
2(µ2−µ2

1 ).

In this manner, one sees that

1
(2π)m m

∫
∞

−∞

dα1dα2 . . .dαm e−
√
−1
√

2(µ2−µ2
1 )Σ(ρiαi− 1

2 T2

(
1−
√
−1
6

T3−·· ·
)
.

If one makes the αi subject to an analogous change, that is that one puts

αi = zi
1√

1
2 (µ2−µ2

1 )
, dαi =

dzi√
1
2 (µ2−µ2

1 )
,

there will result from it

dridαi = dρi

√
2(m2−µ2

1 )×
dzi√

1
2 (µ2−µ2

1 )
= 2dρidzi.

Moreover, the factor 1
2 (µ2−µ2

1 ) will vanish from the term 1
2 T2; so that the probability

of the system of errors designated by ρi or by

ri = µ1SKi,h +ρi

√
2(µ2−µ2

1 ),

which is equal to

p = m

∫
dr1dr2 . . .drmQ,

will be calculated by the formula

p=
1

πm

∫
dρ1dρ2 . . .dρm

∫
∞

−∞

dz1dz2 . . .dzm e−2
√
−1Σρizi−Z2

(
1−
√
−1
6

Z1 +
1

24
Z1−

1
72

Z2
2

)
,

by writing Z2, Z3, Z4, for brevity, instead of the following terms that give the change of
the αi by zi√

1
2 (µ2−µ2

1 )
. One knows

1
2

T2 =
µ2−µ2

1
2

[Σ(α2
i SK2

i,h)+2Σ(αiαi′SKi,hKi′,h)];

13



and one will have more simply

A2 = Σ(Z2
i SK2

i,h)+2Σ(zizi′SKi,hKi′,h).

Likewise,

(6)



Z3=2
3
2

µ3−3µ3µ1+µ3
1

(µ2−µ2
1 )

3
2

{
Σ(z3

i SK3
i,h)+3Σ(z2

i zi′SK2
i,hKi′,h)

+6Σ(zizi′zi′′SKi,hKi′,hKi′′,h)

}
,

Z4=4 µ1−4µ3µ1−3µ2
2+12µ2µ2

1−6µ3
1

(µ2−µ1)2


Σ(z4

i SK4
i,h)+4Σ(z3

i zi′SK3
i,hKi′,h)

+6Σ(z2
i z2

i′SK2
i,hK2

i′,h)

+12Σ(zizi′zi′′SK2
i,hKi′,hKi′′,h)

+24Σ(zizi′zi′′zi′′′SKi,hKi′,hKi′′,hKi′′′,h)


.

It is quite easy to note that the sums designated by S containing n terms will be
of the form nM, M being a common value of these terms. So that it will suffice, in
order to render very small the parts which contain them, to give to the variables z in the
denominators in which are found n to a power superior to the first, and a common value
M very nearly equivalent. One knows that it is there that which arrives in the analysis
of Laplace.

In order to abridge yet the writing of the exponent of e and in order to develop it,
one will be able to put indifferently

bi,i′ = SKi,hKi′,h = bi′,i,

this which entails
bi,i = SK2

i,h.

In this manner, the exponent will be

(7)



−2ρ1z1
√
−1−2ρ2z2

√
−1−·· ·−2ρizi

√
−1−·· ·−2ρmzm

√
−1

−z2
1b1,1−2z1(z2b1,2 + z3b1,3 + · · ·+ zib1,i + · · ·+ zmb1,m)

−z2
2b2,2−2z2(z3b2,3 + · · ·+ zib2,i + · · ·+ zmb2,m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−z2

i bi,i−2zi(zi+1bi,i+1 + · · ·+ zmbi,m)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−z2
mbm,m.

If now one makes at the same time

(8)



β1=z1h1,1+z2h1,2 + z3h1,3 + · · ·+zih1,i + · · ·+zmh1,m + t1
√
−1

β1= +z2h2,2 + z3h2,3 + · · ·+zih2,i + · · ·+zmh2,m + t2
√
−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β1= +zihi,i + · · · +zihi,m + ti

√
−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β1= zmhm,m + tm

√
−1,

and that after having raised to the square each of the new varialbes βi, one makes the
sum of them, there will be found only four kinds of terms:
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In z2
i of which the coefficient will be

h2
1,i +h2

2,i + · · ·+h2
i−1,i +h2

i,i,

and will contain i terms;
In 2zizi′ of which the coefficient will be likewise

h1,ih1,i′ +h2,ih2,i′ + · · ·+hi−1,ihi−1,i′ +hi,ihi,i′ ,

containing i terms;
In −2zi

√
−1 multiplied by the variable expression

t1h1,i + t2h2,i + · · ·+ tihi,i,

containing i terms;
And, finally, the m squares of the ti taken negatively.
If therefore one makes the coefficients of the z2

i equal to those that these variables
have in the exponent of e, and that one acts likewise for the coefficients of the double
products; this which will give

(9)



b1,1= h2
1,1, b1,2= h1,1h1,2, b1,3= h1,1h1,3,

b2,2= h2
1,2 +h2

2,2 b2,3= h1,2h1,3 +h2,2h2,3

b3,3= h2
1,3 +h2

2,3 +h2
3,3,

b1,4= h1,1h1,4,
b2,4= h1,2h1,4 +h2,2h2,4,
b3,4= h1,3h1,4 +h2,3h2,4 +h3,3h3,4,
b4,4= h2

1,4 +h2
2,4 +h2

3,4 +h2
4,4,

b1,i = h1,1h1,i,
b2,i = h1,2h1,i +h2,2h2,i,
b3,i = h1,3h1,i +h2,3h2,i +h3,3h3,i,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bi,i′= h1,ih1,i +h2,h2,i′ +h3,ih3,i′ + · · ·+hi′,i′hi′,i,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bi,i = h2
1,i +h2

2,i +h2
3,i +h2

4,i + · · ·+hi,i,

relations of which the law is easy to know; next, that one subjects the new variables ti,
which alone multiply the first powers of the zi, to the conditions

(10)



ρ1 = t1h1,1,
ρ2 = t1h1,2 +t2h2,2,
ρ3 = t1h1,3 +t2h2,3 +t3h3,3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρi = t1h1,i +t2h2,i +t3h3,i + · · ·+ tihi,i,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρm= t1h1,m+t2h2,m+t3h3,m+ · · ·+ tmhm,m;

it is manifest that the sum of the squares of the variables βi will be, save the sign, equal
to the function of the zi and of the ρi which formed the exponent (7), less the sum of
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the squares of the variables ti. Thus the exponent will be able to be replaced by the
negative sum of the squares of the new variables βi and ti.

On the other hand, the relations (8) and (10) assure immediately

dβ1dβ2 . . .dβm = dz1dz2 . . .dzm h1,1h2,2 . . .hm,m,

dρ1dρ2 . . .dρm = dt1dt2 . . .dtm h1,1h2,2 . . .hm,m;

so that
dρ1dρ2dρm×dz1dz2 . . .dzm = dt1dt2 . . .dtm×dβ1dβ2 . . .dβm.

Hence, the variables are found completely separated in the multiple integral, the
limits of the βi remaining infinite, as those of the zi or of the αi from which they derive;
and one obtains the probability

p =
1

πm

{
m
∫

dt1dt2 . . .dtm e−t2
1−t2

2−···−t2
m

× m
∫

∞

−∞
dβ1dβ2 . . .dβm e−β 2

1−β 2
2−···−β 2

m

(
1−

√
−1
6 Z3 +

1
24 Z4− 1

72 Z2
3

) } .

In this new expression, the multiple integral relative to β is obtained without other
difficulty than to write, considering the known values∫

∞

−∞

dβ e−β 2
=
√

π,
∫

∞

−∞

β
2i+1dβ e−β 2

= 0,

∫
∞

−∞

β
2idβ e−β 2

=
1.3.5 . . .2i−1

2.2.2 . . .2
√

π.

One will have therefore

m

∫
∞

−∞

dβ1dβ2 . . .dβm e−β 2
1−β 2

2−···−β 2
m = (

√
π)m.

But, when the function under the sign will be multiplied by the quantities repre-
sented in equation (6) by Z3 and Z4 or by Z2

3 , the result will be less simple. One knew
immediately that it will contain only the parts of these expression multiplied by some
even powers of β , the odd powers vanish. There remains that Z3 will be changed into a
function B3(

√
π)m of the ti, containing only the first powers, second and third of these

new variables; Z4 will become B4(
√

π)m and will contain only the zero, first, second,
third and fourth powers; finally Z2

3 becoming B6(
√

π)m will offer the zero, first, second,
third, fourth, fifth and sixth powers of ti. These terms will not be developed, uniquely
for brevity.

After all these remarks, there remains for the probability

p =
1

(
√

π)m m

∫
dt1dt2 . . .dtm e−t2

1−t2
2−···−t2

m

(
1− 1

6
B3 +

1
24

B4−
1

72
B6

)
.

One sole difficulty will seem perhaps to hinder this transformation (if one deviates,
well understood, those which hold to the process of Laplace, of which there will not be
question here). The difficulty of which there is concern, it is that which would carry on
the determination of the arbitraries hi,i′ , which are deduced from the coefficients bi,i′
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only through some equations of the second degree (9), and would be able to become
imaginaries. But it is thence that which could not arrive, seeing that the function of
the second degree in z1, z2, . . . , zm is a sum of squares, as one is able to convince
oneself; and this form permits to apply the following march in a Memoir presented to
the Académie des Sciences in 1834 (Volume VI of the Recueil des Savants étrangers).
The successive transformation of the variables would put into evidence the sums of
squares which only enter into the radicals, and render them necessarily reals.

Restoring through all that which precedes to no longer contain but some integrals
of the form ∫

dt e−t2
tn,

nothing will be easier than to obtain the probability p when the limits of the variables ti
will be deduced, by means of relations (10), of those that one will wish to assign to the
errors ρi. The magnitudes of these last are arbitrary; but one sees that the magnitude
assigned to one of them will influence on the form of all the others, or all at least on
the form of those which follow it in the order of the relations (10). If one would wish
that the variables ρi be only proportionals to the terms tihi,i, which enter only once
into each respectively, one would arrive only by assigning to the variables ti in the
integral p of the limits which would depend on these variables; if also that it would be
possible to evaluate p only by some very painful approximations. But there exists some
combinations of errors of which the probability is able, to the contrary, to be expressed
without too many difficulties.

These are those for which the exponent of e is able to take only the values inferior to
a certain constant γ2. One sees that it is necessary to integrate p under this hypothesis
for all the values of ti which satisfy the condition

t2
1 + t2

2 + · · ·+ t2
i + · · ·+ t2

m < γ
2.

One will arrive there through several well known methods. There could be found some
interest, fifteen or twenty years ago, when from the first research on this subject, to
develop these processes. It will suffice today to show that there is need only of very
simple integrations.

By operating successively on the variables ti, one would have to integrate each of
them between the equal limits and of contrary signs

ti =±
√

γ2− t2
1 − t2

2 −·· ·− t2
i−1.

Now, between similar limits, it is clear that the integration relative to the function which
has been designated by B3 will give a null result. B3 arises effectively from Z3, where
there enters only some products of odd degree of the zi and where there remains only
the terms affected of even powers of βi, that is those which offer some odd powers of
ti. They will give place to some integrations of the form∫ c

c
dt e−t2

t2n+1 = 0.

Thus, all that which is relative to B3 will vanish.
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As for B4 and B6, it is found from the products of even powers of ti, and the odd
powers will be affected with

√
−1; those will make the imaginary terms vanish where

they are encountered. But the integration will leave to subsist all the terms where there
enters only some even powers. The result will not be null therefore. Only, all the terms
of these functions acquire, by the substitution of the values of zi as function of βi and ti
of the divisors which contain the squares of the finite sums of the factors Ki,h, which are
in number n in each sum. Thus, when the number n of observations will be very great,
each of the terms will be of very small order 1

n . It will be superfluous to be arrested on
this point in the present question. One knows rather that it is precisely there the form
that the analysis of Laplace brings forth. There would be only to show it by the same
calculation, no other difficulty than the length of the writing of these rather complex
expressions. However, it is necessary to observe that, when there are m elements or
unknowns, and not one alone, the number of these terms of order 1

n depends on the
number m. So that the set of these terms is only of the order of m

n . It is therefore
indispensable, since one neglects constantly this part of the integral, to be assured that
n
m is a great number; great enough especially in order to counterbalance the influence
of the powers of γ which enter into these terms to γ6. There will be therefore in the
applications a condition to not forget, that γ6 m

n remains of the order of the quantities
that one will believe to be able to be permitted to neglect. If it is not thus, one would be
able to be assured some exactitude only for some small values of γ; and it is this which
has not always been made with the attention that this point merits.

After these considerations, there remains no more to be occupied but with the for-
mula of approximation

p =
1

(
√

π)m m

∫
dt1dt2 . . .dtm e−t2

1−t2
2−···−t2

m .

Between the equal limits and of contrary signs, it is palpable that the negative values
of the ti give some results equal to those that produce the positive values. One is able
therefore to double the result of each integration, or to multiply the integral above by
2m, and make the calculation only from zero to the positive limits. This is that which is
executed easily by transforming first one of the variables tm for example, by means of
the relation

t2
1 + t2

2 + · · ·+ t2
m = u2,

tm =
√

u2− t2
1 − t2

2 −·· ·− t2
m−1,

tmdtm = udu,
dtm = udu√

u2−t2
1−t2

2−···−t2
m−1

,

which carries for the limits of u the values zero to γ . The expression of p restores thus
to

p =

(
2√
π

)m ∫ γ

0
udue−u2

m−1

∫ dt1dt2 . . .dtm−1√
u2− t2

1 − t2
2 −·· ·− t2

m−1

,
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and under this form it is sufficient from the truly elementary single integral,

∫ √a

0
dttη(a− t2)

δ
2 = aη+ δ+1

2
Γ
(
η + 1

2

)
Γ

(
δ

2 +1
)

2Γ

(
η +1+ δ+1

2

) ,

in order to reduce the multiple integral. The gamma functions have here for object
only to abbreviate the writing. The formula which contains them is properly that which
serves to reduce the terms contained in B4 and B6. It is necessary to make η = 0, in
order to apply it to the approximate value of p.

It is evident, in this particular case,

∫ √a

0
dt(a− t2)

δ
2 =

√
π

2
a

δ+1
2

Γ

(
δ

2 +1
)

Γ

(
δ+1

2 +1
) .

Employing this expression (m− 1) times, by taking care to give successively to a
the values (u2− t2

1 − t2
2 − ·· ·− ti), which result from the disappearance of one of the

variables ti in each operations, one will obtain

m−1

∫ dt1dt2 . . .dtm−1√
u2− t2

1 − t2
2 −·· ·− t2

m−1

= um−2
(√

π

2

)m−1
Γ
( 1

2

)
Γ(1)

× Γ(1)
Γ
( 3

2

) × Γ
( 3

2

)
Γ(2)

×·· ·×
Γ
(m−1

2

)
Γ
(m

2

)
= um−1

(√
π

2

)m 2
Γ
(m

2

)
Substituting into p, there results from it

p =
2

Γ
(m

2

) ∫ γ

0
um−1due−u2

.

This quite simple result receives two very different forms according as the number m
of the elements or of the unknowns is even or odd. It is most worthy to note that from
the point of view of the numerical calculus, the probability is more simply expressed
when there is presented an even number of unknowns, than even when there is concern
of one alone.

One knows effectively that

∫
γ

0
um−1due−u2

=− γ
m−2 e−γ2

2
− m−2

2
γ

m−4 e−γ2

2
− m−2

2
· m−4

2
γ

m−6 e−γ2

2
−·· ·

− m−2
2
· m−4

2
· · · m−2i

2
γ

m−2i−2 e−γ2

2

+
m−2

2
· m−4

2
· · · m−2i

2
m−2i−2

2

∫
γ

0
um−2i−3due−u2

.
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So that, for m = 2g,

∫
γ

0
u2g−1due−u2

=

{
−γ2g−2− 2g−2

2 γ2g−4− 2g−2
2 ·

2g−4
2 · γ

2g−6−·· ·
− 2g−2

2 ·
2g−4

2 · · ·
2
2

}
e−γ2

2

+
2g−2

2
· 2g−4

2
· · · 2

2
· 1

2
,

that one is able to write

∫
γ

0
u2g−1due−u2

=
1
2

Γ

(
2g
2

)
− 1

2
Γ

(
2g
2

)
e−γ2

 γ2g−2

Γ

(
2g
2

) +
γ2g−4

Γ

(
2g−2

2

) + · · ·+ γ2

Γ
( 4

2

) +1

 ;

and, for m = 2g−1,

∫
γ

0
u2g−2due−u2

=

{
−γ2g−3− 2g−3

2 γ2g−5− 2g−3
2 ·

2g−5
2 · γ

2g−7−·· ·
− 2g−3

2 ·
2g−5

2 · · ·
3
2 γ

}
e−γ2

2

+
2g−3

2
· 2g−5

2
· · · 3

2
· 1

2

∫
γ

0
due−u2

,

which will be written also, because of Γ

(
2g−1

2

)
= 2g−3

2 ·
2g−5

2 · · ·
3
2 ·
√

π

2 ,

∫
γ

0
u2g−2due−u2

= Γ

(
2g−1

2

)

× 1√
π

∫
γ

0
due−u2 − 1

2
Γ

(
2g−1

2

)
eγ2

 γ2g−3

Γ

(
2g−1

2

) +
γ2g−5

Γ

(
2g−3

2

) + · · ·+ γ

Γ
( 3

2

)
 .

One will have therefore finally

(11)


p2g−1=

2√
π

∫ γ

0 due−u2 − e−γ2

[
γ2g−3

Γ

(
2g−1

2

) + γ2g−5

Γ

(
2g−3

2

) + · · ·+ γ3

Γ( 5
2 )

+ γ

Γ( 3
2 )

]
,

p2g=1− e−γ2

[
γ2g−2

Γ

(
2g
2

) + γ2g−4

Γ

(
2g−2

2

) + · · ·+ γ2

Γ( 4
2 )

+ 1
Γ( 2

2 )

]
.

Such are the expressions approached from the probability that the errors ρi (10),
expressed in functions of the variables ti, are not able to be understood beyond the
limits assigned by the condition

(12) t2
1 + t2

2 + · · ·+ t2
m < γ

2.

If there were only three variables, one would express this condition by saying that
the points that they determine, when one regards them as some rectangular coordinates,
are not exited from the sphere of radius γ . That analogy leads therefore to say that the
variables t are not able to exit from the extent of the analytic relationship

t2
1 + t2

2 + · · ·+ t2
m = γ

2,
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which permits none to exceed ±γ .
One recognizes without doubt already, in the general forms of the probability (11),

how much it will be different according to the number of the elements; one sees that
it diminishes for one same value of γ , in measure as the number m of the elements
increase, and it is that which must be, conformably to the principles of the calculus of
the probabilities reported at the beginning of this work.

It was there the principal end that there was concern to attain; and, up to a certain
degree, it was distant to be stopped there. For one recognized without difficulty that the
coefficents Ki,h are able to be those that give the method of least squares, since those
will satisfy the little numerous conditions (3), which alone are imposed on the factors
Ki,h, in order that there results values of the unknowns from it.

But, as the expressions of the errors of these elements are here different from those
which are found widespread in the many works since the theories of Mr. Gauss and of
Laplace, one would demand, without any doubt, if the results of the preceding analysis
render or not necessary the factors Ki,h particular to the method of least squares. It
seems therefore indispensable to prove that, under the conditions posed, the value of
the probability, or rather the expressions of the errors in which all the difficulties of the
question are reunited, since the probability is only a pure constant that one is able to
calculate in advance and of which one has some Tables, to which the concern is only to
apply some errors of given magnitude; it seems indispensable to prove that the errors
will be the smallest possible when one will employ in the elimination of the unknowns
the factors Ki,h assigned by the method of least squares. One will see then clearly
that the omission committed on the value of the probability of the errors would alter
only this probability, and that the modification which repairs it (formulas 11) carries
no change in the mode of elimination prescribed by the method. This is that which is
going to be done, before preceding to some numerical applications.

But since at present there is agreement to retell it, the formulas (11) and (10) repair
the omission completely. One recognized, moreover, that they apply to all the systems
of elimination by means of factors or of linear combinations of the equations given by
observation. They permit thus to calculate the error and the probability in the number
of cases where one does not wish to take all the pain that the method of least squares
requires.

They contain effectively the calculation of the probability of a system of linear
functions ri (4) of errors εh submitted to a law of probability φ(ε), whatever be the
origin of these functions, and whatever is able to be the determinations of the factors
Ki,h. These formulas offer therefore the solution of a class of rather extended problems,
in which the coexistence of many functions is necessary, and where one would know
since then how to have in view only the probability of their set. It is besides rather
worthy of remark that the expressions of the probability are the same as if the functions
ri or ρi were independent, and if there was concern only to make the product of their
particular probabilities, next to determine from them the value under the condition
(12); it is well known that, in this case, the relations (10) would not subsist. But it
is necessary to be arrested in these indications, and to return to the method of least
squares.
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§III.

The concern is to research what are the values of the arbitrary factors Ki,h which will
give the narrowest limits to the errors ρi for a probability determined by the constant γ .

The question would be to know how to resolve without knowledge of the extent
of the values only to be able to take an error ρi depending on the ti, according as the
formulas (10), when the ti are subject to the condition (12),

t2
1 + t2

2 + · · ·+ t2
m < γ

2.

Let one suppose first the variables ti linked by the relation

t2
1 + t2

2 + · · ·+ t2
m = u,

and let one seek the greatest value that is able to receive

ρi = t1h1,i + t2h2,i + · · ·+ tihi,i

which contain only i of the m variables t. One will be able to consider these i variables,
whatever be besides the m− i remaining as linked by the equation

t2
1 + t2

2 + · · ·+ t2
i = u− t2

i+1− t2
i+2−·· ·− t2

m = ν .

Hence, one will have, for the greatest value of ρi, the conditions

dρi

dti′
= ht ′,i +hi,i

dti
dti′

= 0,

ti′dti′ + tidti = 0,

ti′ being any one of the i first variables, ν being regarded as constant relative to these
variables, and ti being found function of the i−1 which precede it. One deduces thence

hi′,i−hi,i
Ti′

ti
= 0 or

ti′
ti
=

hi′,i

hi,i
.

It will be necessary therefore that the ti′ are proportional to the hi′,i corresponding.
Putting

ti′ = f hi′,i,

one concludes from it

f 2(h2
1,i +h2

2,i +h2
3,i + · · ·+h2

i,i) = ν .

Now, by virtue of the last of the relations (9), the sum which multiplies f 2 is precisely
equal to the coefficient bi,i; one has therefore

f 2bi,i = ν and f =
√

ν

bi,i
.
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The greatest value of ρi will be

ρi = f (h2
1,i +h2

2,i + · · ·+h2
i,i)

= bi,i

√
ν

bi,i
=
√

νbi,i

This value will be, indeed, the greatest absolutely, for one is able to be assured that the
sign of the second total differential is negative or positive, according as one takes the
factor f positive or negative, that is according as one takes ρi to its positive limit or to
its negative limit. Instead of calculating the second differential, that which is not very
complicated, one will abridge however, by substituting f hi′,i +δi′ into ρi instead of ti′ ,
this which gives

ρi = f (h2
1,i +h2

2,i + · · ·+h2
i,i)+δ1h1,i +δ2h2,i + · · ·+δihi,i

= f bi,i +δ1h1,i +δ2h2,i + · · ·+δihi,i.

Making the same substitution into ν , there comes

ν = f 2(h2
1,i +h2

2,i + · · ·+h2
i,i)

+2 f (δ1h1,i +δ2h2,i + · · ·+δihi,i)

+δ
2
1 +δ

2
2 + · · ·+δ

2
i ,

and, because of the value of f 2, there remains only

δ1h1,i +δ2h2,i + · · ·+δihi,i =−
1

2 f
(δ 2

1 +δ
2
2 + · · ·+δ

2
i ).

Thus,

ρi = f
[

bi,i−
1
2
(δ 2

1 +δ
2
2 + · · ·+δ

2
i )

]
.

The value of
ρi = f bi,i

is therefore a maximum or a minimum, according as the sign of f , that is that it is also
greatest absolutely.

It is not necessary to forget, however, that ν has for superior limit u, this which
supposes that all the t from ti+1 to tm are nulls. According to that, the extreme limits of
ρi are ±

√
ubi,i. Next, as u must be remaining inferior to γ2, one sees that, definitely,

for a probability determined by the constant γ , this constant fixes very simply the extent
of the limits of the errors ρi under the form

ρi =±γ
√

bi,i.

Moreover, this form was quite easy to foresee according to the first of the relations (10)
and the symmetry of all this calculus. There is, indeed, in the relations (10), a real
symmetry that depends on this that one of the errors is able to occupy, at will, any rank
in the transformations; so also, that it is permitted to affirm that that which is able to
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be recognized out of the error expressed most simply, holds necessarily for all. But the
asymmetrical appearance of the relations posed has made prefer a more striking proof.

If one recalls actually that bi,i is made only to replace S.K2
i,h, one will have, for the

limits of ρi,

ρi =±γ

√
S.K2

i,h.

There remains, since then, in order to restrict the most possible this extent of the errors
ρi, only to find the means to render a minimum the sum of the squares S.K2

i,h. Now
one knows that it is there one of the properties of the factors by which one effects the
elimination in the method of least squares.

One can scarcely, in order to demonstrate it briefly, take another way than the im-
mediate comparison of the coefficients Ki,h which serves to obtain the value

xi = SωhKi,h,

with the factors which would give the same unknown, according to the method of least
squares.

Calling these factors Ai,h, it is clear that they will satisfy, as the Ki,h, the equations
(3), in which it sufficed to substitute one letter for the other, and that one would find

x′i = SωhAi,h.

But at the same time, if one had operated directly according to the prescriptions of
the method by forming m equations, by aid of the successive multiplication of the n
equations (1) by the coefficients of each unknown, these m equations would be

x1Sa1,ha1,h +x2Sa1,ha2,h+ · · ·+xiSa1,hai,h+ · · ·=Sa1,hωh,
x1Sa2,ha1,h +x2Sa2,ha2,h+ · · ·+xiSa2,hai,h+ · · ·=Sa2,hωh,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1Sai,ha1,h + x2Sai,ha2,h + · · ·+ xiSai,hai,h + · · ·=Sai,hωh,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1Sam,ha1,h+x2Sam,ha2,h+ · · ·+xiSam,hai,h+ · · ·=Sam,hωh,

and one would eliminate by multplying by m factors B1, B2,. . . , Bi,. . . , Bm, which
would be subject to as many relations, such that one had

x′i = BiSa1,hωh +B2Sa2,h + · · ·+BmSam,hωh,

or the same value as by the coefficients Ai,h.
One will reunite in common factor all that which multiplies ω1, ω2, . . . , ωn, and

there will result

x′i = ω1ΣBi′ai′,1 +ω2ΣBi′ai′,2 +ω3ΣBi′ai′,3 + · · ·+ωhΣBi′ai′,h + · · ·
+ωnΣBi′ai′,n.

By bringing together this form of the preceding

x′i = SωhAi,h,
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one recognized that the coefficients Ai,h, applied directly to the n given equations, are
linked to the factors B1, B2, etc., by the relation

Ai,h = ΣBi′ai′,h.

Let now one be reported to the relations (3) of the Ki,h and let one subtract from
them a system of similar relations in which one will have set Ai,h in the place of Ki,h,
thus as the remark has been made just now; the subtraction of two corresponding rela-
tions will give a system of m equations

Sa1,h(Ki,h−Ai,h) = 0,
Sa2,h(Ki,h−Ai,h) = 0,

Sai′,h(Ki,h−Ai,h) = 0,
Sai,h(Ki,h−Ai,h) = 0,

Sam,h(Ki,h−Ai,h) = 0;

and it becomes manifest that by multiplying them by the factors Bi′ respectively, next
adding them all, they will give

S[(ΣBi′ai′,h)(Ki,h−Ai,h)] = 0;

and, as ΣBi′ai′,h is nothing other than Ai,h in the method of least squares, there will
result from it

S[Ai,h(Ki,h−Ai,h)] = 0,

or else
SAi,hKi,h = SA2

i,h,

a singular relation between the arbitrary factors Ki,h and those that require the minimum
of the squares. Thence nothing is more easy than to conclude the identity

SK2
i,h−2SAi,hKi,h = SK2

i,h−2SA2
i,h,

next
SK2

i,h−SA2
i,h = SK2

i,h−2SKi,hAi,h +2SA2
i,h,

and
SK2

i,h = SA2
i,h +S(Ki,h−Ai,h)

2,

an expression by which Mr. Gauss has demonstrated that, under the relations (3), the
minimum of the sum of the squares of the factors Ki,h holds when these factors are
precisely the factors Ai,h assigned by the method of Legendre.

This method reduces therefore the errors which will enter necessarily into the val-
ues of the xi, to the most narrow possible limits, for a given probability. Reciprocally,
if a system of limits determine a probability, as the quantity γ which serves to calculate
it will be linked to all the limits by the relation

ρi = γ

√
S.K2

i,h,
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it is palpable that γ will be a maximum for the minimum of S.K2
i,h, or for the result of

the method of least squares; so that a system of limits being chosen, the probability
that the errors will not exit from it will be the greatest possible, when one will have
determined the unknowns by this method.

It has already been said effectively that, in the formulas (11), the value of p is
increasing with γ . It is this which one recognizes immediately by the differentiation of
these formulas which, both, when m is the number 2g or 2g−1 of the elements, have
for derived the quantity

d pm

dγ
= 2e−γ2 γm−1

Γ
(m

2

) ,
a very simple expression which would change in sign only with the constant γ , here
regarded as variable.

One is able to be assured that, for m = 1, when there is only a single element or a
single unknown x, all these formulas return completely into the known relations

r = µ1S.Ah +ρ

√
2(µ2−µ2

1 ),

limits of ρ =±γ

√
S.A2

h,

p1 =
2√
π

∫
γ

0
e−t2

dt.

One knew the simple processes given by Laplace and by Mr. Gauss in order to de-
duce the quantities µ1 and µ2 of the same observations. These processes, which depend
on that which one called the theory of probabilities a posteriori, are not modified by
the change which was just developed. It influences happily only on the magnitude of
the probability, or rather on the extent of the most probable errors. There will therefore
be no question of the calculation of µ1 nor of µ2. but it has seemed necessary, except
to form some Tables of numerical values of the formulas (11), at least to present some
interesting values.

Before proceding to this application, perhaps it is acceptable to make to observe
that if the expression of the probability p given generally (page 16),

p =
1

(
√

π)m m

∫
dt1dt2 . . .dtm e−t2

1−t2
2−···−t2

m

(
1− 1

6
B3 +

1
24

B4−
1

72
B6

)
.

had been integrated relative to all the variables except one, the result would have been
the probability of the limits assigned to the error ρ corresponding, however great that
all the other errors be: in other terms, the probability of this error considered in isola-
tion, and as if the others did not exist. One would arrive in this manner to the formulas
relative to the case of one element only, such as they come to be written, that is in the
ordinary manner of calculation of the probability. But, again one time, this mode gives
it much too great, since it counts, in the calculation, all the probability of the combina-
tions of errors, in which the other errors have some magnitudes which would no longer
permit even to be trusted in the equations. One is going to recognize, moreover, the
extreme difference of the two results.
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The same considerations have prevented having regard to the mean values of the
errors. One knows that one calls thus the sum of the products of the errors, taken all
positively, by their respective probabilities. This arithmetic mean, in which each error
enters proportionally to the number of chances which are able to bring it forth, are able
to be an exact index of the importance of an error only when it is calculated in isolation.
If, on the contrary, it was encountered that the greatest considerable magnitudes of the
error of an unknown were precisely those which depend on systems of errors of which
the probability is weak, one imagines that the mean would be able to give an erroneous
idea of the most ordinary magnitude of the special error to which it is reported. In
general, the use of the mean values is chosen delicately, unless they were not the special
object of researches. One will sense immediately, for example, that even in the most
simple case, the mean of the errors ρi, which is calculated by integrating

2√
π

∫
∞

0
dte−t2

t
√

S.K2
i,h =

1√
π

√
S.K2

i,h,

does not give an idea quite just, since the limits between which there are odds one
against one that the value ρi is able to fall are determined by the equation∫ z

0
dte−t2

=
∫

∞

z
dte−t2

=
1
2
√

π−
∫ z

0
dte−t2

,

or else ∫ z

0
dte−t2

=
1
2
√

π;

where one draws
z = 0.476936.

1√
π

is, on the contrary, equal to 0.564 18.
The mean of the errors is therefore far from being encountered among the most

probable errors. In truth, this mean is that of all the errors taken with the + sign, and
the real mean is 0. There would be more than one observation to make on the usage of
the means; but it is necessary here, in order to avoid too much length, not be be arrested
there, no more than a great number of other useful points. It suffices to have shown
that the means have not always the sense that the habits of the mind make attached,
in the most ordinary circumstances; and that, consequently, they are not proper at all
to the demonstration of the method of least squares. Also is it from this evaluation of
the mean of the errors, taken with the positive sign, that Mr. Gauss forms a kind of
objection to the analysis of Laplace (Theoria Combinationis, etc.). The fact is that the
result would not be at all rigorous, if this mean were not found proportional to the limits
of the errors. But it is likewise in the mean of the squares of the errors that Mr. Gauss
believed to be able to adopt a priori as criterium of the precision. It is, on the contrary,
the existence of the remarkable criterium that the analysis of Laplace demonstrates,
likewise all that which precedes.

§IV.
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In the applications, the value of the constant γ , the most difficult to find perhaps, if not
the most useful, is that for which the probability is equal to 1

2 . There is, for this value,
as many odds as the errors will fall within the limits which result from it, as there are
they will exceed these limits.

Thus, first, in the case of a single unknown x, Bessel has given the value

γ = 0.4769364.

The last decimal appeared inexact, and it is necessary to take

γ = 0.47693627620.

But it is there a veritable luxury of decimals, in fact of probabilities; for it will be quite
rare that the term neglected which depends on a large number n of observations permits
to push the approximation beyond some first decimals.

One has therefore, for a single unknown, the probability

p1 =
2√
π

∫ 0.4769...

0
dt e−t2

=
1
2
,

that the error r of the value x is between the limits

r = µ1S.Ah±0.4769 . . .
√

2(µ2−µ2
1 )S.A

2
h,

the factors A being those which indicate the method of least squares. As to the values
µ1 and µ2, they must be sought, either beyond the observations, or by the observations
themselves, and that, according to the known process for the probabilities a posteriori,
thus as it has been said.

When nothing prevents raising the value of γ to 3 for example, the probability that
the error is contained within the limits

r−µ1S.Ah =±3
√

(µ2−µ2
1 )S.A

2

is expressed very nearly by

2√
π

∫ 3

0
dt e−t2

= 0.99997790.

It is this which one is able to see in the Tables which have been published for the values
of the integral 2√

π

∫ γ

0 dt e−t2
(notably in the Exposition de la Théorie des Chances, of

Mr. Cournot.)
These values are precisely those which have been applied, by omission, to the prob-

lems which comprehend many unknowns. They are reported here only in order to
facilitate the comparison with those which give formulas (11).

If there are two unknowns, it is necessary to employ the second of these formulas,
and the probability is then very simply

p2 = 1− e−γ2
.
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It becomes equal to 1
2 , for 1

2 = e−γ2
, or γ =

√
l 2, the letter l indicates the Napierian

logarithm. One will find without difficulty

γ = 0.83255461 . . .

Thus, since there are only two elements to deduce from observations, the limits
comprehend an interval nearly double, and the errors are able to be much more greater,
consequently.

One has the probability 1
2 that the error of the element xi is comprehended within

the limits
ri−µ1S.Ai,h =±0.83255 . . .

√
2(µ2−µ2

1 )S.A
2
i,h,

or, if one wishes that the errors are able to vary, one will say that 1
2 is the probability of

the set of all the systems for which

r1−µ1S.A1,h= t1
√

2(µ2−µ2
1 )S.A

2
1,h,

r2−µ1S.A2,h= t1

√
2(µ2−µ2

1 )
(S.A1,hA2,h)

2

S.A2
1,h

t2

√
2(µ2−µ2

1 )

(
S.A2

2,h−
(S.A1,hA2,h)

2

S.A2
1,h

)
,

the variables t1 and t2 being subject to the condition

t2
1 + t2

2 < 0.69314718 . . . ;

the quantities under the radicals being determined besides by the relations (9), where
the factors A of the method of least squares replace the arbitraries K in the coefficients

bi,i′ = S.Ki,hKi′,h.

When in this system one will wish to attain a probability 0.99 997 790. . . equal to
that which gives γ = 3 when there is only one unknown, it will be cecessary to resolve
the equation

1− e−γ2
= 0.99997790 . . . ;

which raises the value of γ to 3.27 419. . .
Thus, for some very great probabilities, the limits differ less than for the weak

probabilities, when one passes from the case of a single unknown to the case of two
unknowns. It is this of which it is easy to render account, since it would be absolutely
likewise if the two unknowns were independent of one another.

Here is now (finally for brevity) the table of values of γ which give the probability
equal to 1

2 in the formulas (11), from m = 1 to m = 8. It would not be difficult, but it
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would be very long to make the same calculations for a greater number of elements:

m = 1, γ1 = 0.47693,
m = 2, γ1 = 0.83255, = 1.7456×γ1,
m = 3, γ1 = 1.0876, = 2.2814×γ1,
m = 4, γ1 = 1.29551, = 2.7164×γ1,
m = 5, γ1 = 1.4750, = 3.0927×γ1,
m = 6, γ1 = 1.63525, = 3.4287×γ1,
m = 7, γ1 = 1.7812, = 3.7347×γ1,
m = 8, γ1 = 1.91623, = 4.0178×γ1.

The concern is only to compare each of these numbers with the first, in order to
recognize immediately the real extent of the limits of the probable error, already calcu-
lated in a system of observations. There exists, effectively, no change to make incur to
the ordinary calculations, save to the one of the value γ . It is nearly useless to remem-
ber, moreover, that the probable error is thus named because it is precisely the value of
the limit corresponding to the probabiltiy 1

2 .
Here is an example of this closeness. Bessel, in his Memoir on the Comet of Olbers

(Untersuchungen über die Bahn des Olberschen Kometen), employed to the correction
of the elements of the orbit three hundred forty-nine observations, of which he forms
some equations in six unknowns. He concludes from it, for one of these unknowns, the
correction of the eccentricity, a probable error of 0.00 017 127 which he evaluates in
time at around 101 days, out of the 74 years assigned to the revolution of the star.

In this calculation, Bessel has employed the factor

γ1 = 0.47693.

Since there are six unknowns, it would be convenient to take, on the contrary,

γ6 = 1.63525 = 3.428 . . .× γ1,

that is more than triple, and to elevate the probable error to 0.00 058 72, this which
entails without doubt a probable error near to one year out of the duration of the revo-
lution.

One is able very well here to recognize the necessity to extend thus the limits of
the probable error. One senses, indeed, that it is necessary, in order that the errors
of the other elements are able to have the same probability, to take account of all the
combinations in which each of their values are by right to enter.

Bessel remarks with all reason that it is much to regret that the circumstances of
the geocentric movement had left one so great uncertainty on this element, while the
others offer only some errors quite less comparatively. The comet of Olbers must return
to perihelion only 9 February 1887, it will not be before thirty-five years that these
calculations will be able to offer a positive interest. But one sees, in the Memoir of
Bessel, that he assigned a probability of 66.65 against 1, to the limit of one year, while
one is able to wager no more than 1 against 1 that the comet will not exceed this limit,
in advance or in retard. In order to obtain 66.85 against 1, it would be necessary to
resolve exactly the equation resulting from the second of the formulas (11), this which
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would give to γ a value (2.812) more than quintuple of the value γ1, and entailing a
limit of possible errors, although little probable, around nineteen months.

It would be nearly useless to make exactly this last calculation, because the number
of observations being only 349, and the number of the elements being elevated to 6, the
divisor of the neglected terms attains only 58; so that these terms would be able to have
a great influence on the first decimals of the probability. It suffices to have indicated
the sense in which the omissions influence. As for the small values of γ , it is much
more difficult that the neglected terms were an effect capable of altering sensibly the
probability 1

2 , or each other as weak, and it is by this reason that the calculation has
been made with exactitude.

Here is a second and last example of the application of the formulas (11).
In the first Supplement to the Théorie analytique des Probabilités, Laplace evalu-

ated to 1 000 000 against 1 the probability that the mass of Jupiter, which he corrected
by the aid of 129 equations, in which he has made this mass equal to 1+z′

1067.09 , and which
he reduced to 1

1070.35 , is not in error of 1
100 of the first value. However, it is carried,

actually, to 1
1050 in the Annuaire du Bureau des Longitudes. The difference is around

1
51.5 ; this which makes very nearly the double of the limits assigned with one so high
probability.

This considerable difference is able to depend on the manner by which the 129
equations have been formed, and is able to be even one totally natural consequence
of the defect of precision of the observations employed, or of the formulas of reduc-
tion. But, if one considers that the 129 equations contain 6 unknowns, and that, con-
sequently, it would be necessary to attach to the limits of z′ only the probability of
the set of the limits assigned to all these unknowns, and to which they must satisfy
at the same time, one finds a probability much inferior to 1000000

1000001 , or, more exactly,
1−0,000001004, which give the values reported by Laplace.

The value of the correction, such as Laplace gives it, is

z′ = 0.00305+ γ

√
1

(345.885)2 .

The divisor under the radical is a little too great, because it would be necessary to take,
for 129 observations and 6 unknowns, only 123 times (or 129− 6) a certain denom-
inator. By taking account of this slight correction, depending on this that 6 is not to
neglect next to 129, one has, for z′, the limits

z′ = 0.00305± γ×0.00296.

The possible error of z′ must be such, that the error of the mass is below 1
100 of 1

1067.09 ,
there results from it

γ×0.00296
1067.09

=
1

100
· 1

1067.09
,

or else
γ = 3.37745.

This value of γ would have yet given to Laplace the probability 0.999 998 21, or
very nearly odds of 560 488 against 1.
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But, if one makes it enter into the second of the formulas (11), in putting m = 6,
one finds

p6 = 1− e−γ2
(

1
2

γ
4 + γ

2 +1
)

;

and, each calculation made,
p6 = 0.9991389,

or very nearly 1160
1161 .

There would be therefore only odds of 1160 against 1, that the mass 1
1070.35 were

not in error by 1
100 .

This probability is able already to appear rather great; but it is not necessary to lose
from view that the formulas (11), as those of Laplace, neglect some terms which vanish
only when m

n is rather small in order to permit employing some values of γ as great as
3.37745. These terms, without doubt, render here the formula erroneous, since n

m , far
from being a great number, is only

129
6

= 21.5.

The value
p = 0.9991389

resulting from the approximation, is therefore here very imperfect; and even then that
one would be held to the formula of Laplace, the value that he has given of 1000000

1000001
would not be able to be admitted because of the great uncertainty of the terms neglected
by him.

It is necessary to recognize that 129 equations permit using this approximative
analysis only for weak values of γ . But then, will one say with Mr. Gauss, the method
of least squares is therefore no longer demonstrated for the most frequent cases in
practice, for some numbers of observations very great relative to the pains that they
give to the observers, but too small in order to assure a great probability; this method,
which appeared precious, would be therefore most often only a convenient rule by its
uniformity and by the advantages that Legendre had mentioned since the origin?

To these regrets too founded, it is necessary to respond affirmatively without the
least hesitation. There is need, indeed, only of simple good sense, destitute from each
calculation, in order to recognize that some observations affected with errors are able
to give the values sought only when it is made from the compensations among the
errors; and everyone senses that these compensations could take place only out of the
large numbers. To employ any mean from a small number of facts, it is necessarily
to incur the risk that the errors add. It is thus of them in all the circumstances where
the proof is able to be repeated at will, and then the knowledge that one acquires must
no longer be imprudently extended to beyond the limits of the greatest possible errors.
Certainly, it would be a true aberration to claim that the arithmetic mean of 10 measures
of which each is able to be affected by an error, by more or less, from 0 to 1 centimeter,
will have a great advantage on each other combination of these 10 measures. Without
doubt, it would be worth more to be able to demonstrate that it enjoys always, even
for so small numbers, a superior probability; but, by the single nature of things, the
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difference would be very small. Thus, is it superfluous to research that which is passed
in small numbers? In this regard, one will be always and of total necessity constrained
to return to the reflection of Gibbon: “The laws of probability, so true in general, so
deceptive in particular." It would be necessary therefore, even when one would have
proved that such or such process is the most probable, to serve only in taking account,
no longer of the mean errors, but of the greatest possible errors; for the probability of
the ones and the others will never differ enough in order that one is able to be permitted
to neglect the ones rather than the others. Probability is founded only on the possibility
of the things, and in a small number of observations, a possible event has chance to
take its place as each other of the same possibility. It is only in the large numbers that
certain classes of facts, certain combinations become impossible, or rather not very
possible, consequently, improbable. And this urgent condition of the great number has
nothing in particular to the method of least squares.

That it is necessary to continue to apply this method to small numbers of obser-
vations, it is this which is not doubtful at all. The analysis which demonstrates this
remains true for small numbers likewise as that which proves the value of the mean
results of each specie. Only, the neglected terms no longer allow to be evident an ab-
solute maximum of probability; but, taking their influence, they come to alter a little
the result of the approximation, and one sees that this result is not quite extended from
the maximum. If it differs from it, it is only by small quantities of which the divisors
increase proportionally to the number of observations; so although the method takes
this property to give the maximum of advantage, since this number has some value, it
is also before it is great enough in order to permit to apply, without scruple, the for-
mulas of approximation to the calculation of the probability. It would have to add to
this motives, drawn from the march of the calculations, all those that Legendre made
first to be worth in favor of its process. But this is not the place at all; they are known
and appreciated. There would be concern only to show the ways to fill that which had
appeared to be a troublesome gap in a theory so useful. For nothing is more hurtful
to the progress toward the truth than the erroneous confidence which is increased by
possession of results of which science is yet remote.
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