
Privately printed as a manuscript 
 

 
 

B. V. Gnedenko, A. Ya. Khinchin 
 
 
 

An Elementary Introduction 
to the Theory of Probability 

 
 

                       Б. В. Гнеденко, А. Я. Хинчин 
 
 

                 Элементарное введение 
                 в теорию вероятностей 

 
                              Большое число изданий начиная с 1946 г. 

 
 
 

 
 
 
 
 
 
 

                             Translated by Oscar Sheynin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                  Berlin 

 
                                                   2015 
 
 
 



 
Contents 

Forewords 
Part 1. Probabilities 

Chapter 1. Probabilities 
1.1. The notion of probability 
1.2. Impossible and certain events 
1.3. A problem 

Chapter 2. The rule for the addition of probabilities 
2.1. The derivation of the addition rule 
2.2. Complete systems of events 
2.3. Examples 

Chapter 3. Conditional probabilities and the multiplication rule 
3.1. The notion of conditional probability 
3.2. Derivation of the rule for multiplying probabilities 
3.3. Independent events 

Chapter 4. Corollaries of the addition and multiplication rules 
4.1. Derivation of some inequalities 
4.2. The formula for complete probability 
4.3. The Bayes formula 

Chapter 5. The Bernoulli pattern 
5.1. Examples 
5.2. The Bernoulli formulas 
5.3. The most probable number of occurrences of an event 

Chapter 6. The Bernoulli theorem 
6.1. Its content 
6.2. Its proof 

Part 2. Random variables 
Chapter 7. Random variables and the law of distribution 

7.1. Notion of random variable 
7.2. Notion of the law of distribution 

Chapter 8. The mean value 
8.1. Determination of the mean value of a random variable 

Chapter 9. Mean values of sums and products 
9.1. A theorem on the mean value of sums 
9.2. A theorem on the mean value of products 

Chapter 10. Scatter and mean deviations 
10.1. The mean value is insufficient for characterizing a random 
         variable 
10.2. Various methods of measuring the scatter of random variables 
10.3. Theorems on the mean square deviation 

Chapter 11. The law of large numbers 
11.1. The [Bienaymé −] Chebyshev inequality 
11.2. The law of large numbers 
11.3. The proof of the law of large numbers 

Chapter 12. The normal laws 
12.1. Formulation of the problem 
12.2. Notion of curves of distribution 
12.3. Properties of the curves of normal distributions 
12.4. Problems and examples 

Part 3. Stochastic processes 
Chapter 13. Introduction to the theory of stochastic processes 

13.1. A general idea of stochastic processes 
13.2. Notion of stochastic processes and their various types 
13.3. Simplest flows of events 
13.4. A problem in the queuing theory 
13.5. About a problem in the theory of reliability 

Conclusions 
Notes 
References  



 
 

Foreword to the Fifth Edition 
I have prepared this edition after the death of Khinchin, an eminent 

scientist and pedagogue. His name is connected with many ideas and 
results of modern probability theory. To him is due a systematic 
application of the methods of the set theory and the theory of functions 
of a real variable in probability theory; the construction of the 
fundamentals of the theory of random processes; an extensive 
development of the theory of summation of independent random 
variables; and the development of a new approach to the problems of 
statistical physics and of a harmonious system of its exposition.  
Together with S. N. Bernstein and A. N. Kolmogorov, Khinchin shares 
the merit of constructing the Soviet school of probability theory which 
is playing an outstanding role in modern science.  
    I am happy to have been his student. We wrote this book when the 
Great Patriotic War had been victoriously ending and our examples 
reflected elementary military problems. Now, fifteen years after our 
victory, when the country is covered by scaffolds of new buildings, it 
is natural to extend the scope of those examples. It is exactly for this 
reason that, without changing the general exposition or the elementary 
essence of the book, I allowed myself to substitute new examples for 
many of the previous ones. With a few exceptions I made the same 
alterations in the French edition of this book (Paris, 1960). 

Moscow, 6 October 1960. B. V. Gnedenko 
 

Foreword to the American Edition 
In recent years, the theory of probability has acquired exceptionally 

great importance for the development of mathematics itself as well as 
for the progress of literally all branches of natural science, technology 
and economy. Its role is now beginning to be acknowledged in 
linguistics and even in archaeology. It is for this reason that it is 
essential to popularize its ideas and results as widely as possible and in 
all their varieties. 

In many countries there is a persistent demand for the introduction 
of the elements of the theory of probability into the high-school 
curriculum. This point of view was also shared by A. Ya. Khinchin 
(1894 – 1959). Not long ago, I found a short manuscript of his in 
which he discussed his views on the place of the theory of probability 
in the teaching of school mathematics and he noted in general outline 
the content and nature of presentation.  

I am happy that the present little book is accessible to the American 
reader. During the fifteen years that passed from the time the first 
Soviet edition was published, many interesting works appeared which 
extended the field of application of probability theory and about which 
one could tell in a captivating manner even in a popular booklet. 
However, I did not wish to disturb the plan or style of what was 
thought out by my teacher and me in the last months of the war, which 
swept over the countryside and cities of my country like a hurricane. 
Changes only touched upon certain examples whose subject matter 
was determined by the time when the booklet was written. These 
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changes were made by me in the fifth Soviet edition which is to be 
published almost simultaneously with the American edition. 

24 April 1961. B. V. Gnedenko 
Translated from Russian by Leo F. Boron, the translator of the 

booklet for its American edition  
 

Foreword to the Seventh Edition 
                      For the second time1 I myself without my teacher and co-author 

introduce changes by adding a new chapter. When we conceived the 
ideas of compiling an elementary book on probability theory, we had 
before our eyes young people graduated from secondary school and 
thrown away from science by the whirlwinds of the Great Patriotic 
War. Later, it turned out that the circle of our readers was 
incomparably wider; it was our book that had acquainted engineers 
and economists, biologists and linguists, physicians and military men 
with the ideas and methods of probability theory.  

                       I am pleased that neither in our country nor abroad readers had lost 
interest in our book. It goes without saying that the change of our 
readership should somewhat influence the contents of the book. And, 
since the theory of stochastic processes is now playing a special role in 
numerous applications of probability theory and in its development, I 
considered it necessary to add a short introduction to that important 
field of ideas and studies. Taking into account the general aim of the 
book, I have accordingly paid most attention to generally acquainting 
the readers with the practical issues which lead to the theory of those 
stochastic processes rather than to describing for them the appropriate 
theory or analytical methods.  

                       I will be really grateful to my readers for submitting any desires 
concerning the contents or style of the book and the essence of the 
examples considered there. 

                      Moscow, 10 Dec. 1969. B. V. Gnedenko 
 

From the Foreword to the Eighth Edition 
Thirty five years have passed since the appearance of the first 

edition of this book written on the suggestion of the late Khinchin. 
After his death I have inserted various changes and additions. The 
book did not lose readers and I am pleased that some of them have 
accordingly been led to deep thoughts about applying probabilistic 
methods in engineering, management and economics.  

It is also pleasant that the book had been warmly welcomed abroad; 
it ran through several editions in [seven countries] and was published 
in [more than five others]. This edition only differs from the previous 
by small editorial changes, but life is going on and I would like to hear 
the readers’ wishes about desirable additions and alterations. 

Moscow, September 1975. B. V. Gnedenko 
 

Foreword to the Present Translation 
I. The book. It has been greatly successful, witness the Forewords 

to some of its previous editions. To my surprise, it is hardly 
satisfactory, and I only hope that my appended Notes (unsigned, unlike 
the authors’ Notes now accompanied by letters G&K) and tiny 
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insertions and question marks in the text itself will explain the 
situation. Here are my conclusions. 

1. The book is written very carelessly as mentioned in 12 of my 
Notes. Just one example: artillery firing is mentioned more than once, 
and each time the scatter of the shells is only considered along the line 
of firing. Only once (Note 35) the authors obliquely remark that the 
shells fall around. Carelessness was apparently the reason for 
mentioning quite unnecessary details as well. Thus (omitted in the 
translation), four main causes of stoppages of looms are listed (§ 2.2).  

2. Several opportunities to insert important remarks are missed 
although the student is a torch to be fired rather than a container to be 
filled. The shortcomings of the Bayesian approach are not indicated 
(Note 13), the Bernoulli theorem is discussed unsatisfactorily (Note 
20), chaotic motion is not mentioned (Note 51), direct and inverse 
theorems are not discussed in a general way (Note 31) and neither is 
sampling (Note 40). Nothing is said about the required number of 
significant digits in approximate calculations and the authors 
themselves mistakenly indicated doubtful and unnecessary digits (Note 
11).  

3. The notions of probability and expectation are justified by 
common sense without indicating the accepted formal method; 
moreover, statistical probability is described as theoretical (Note 27). 
Possibly confusing additional words (always, purely random etc.) are 
inserted into statements and definitions (Note 30). 

4. Historical comments are unsatisfactory. Chebyshev is properly 
mentioned in connection with the law of large numbers, but Poisson is 
left out (Note 39). 

5. Some examples concerning the measurement of distances and 
artillery firing (Notes 37 and 46) belong to fairyland and the 
discussion of the errors of measurements (Notes 41 and 42, also Note 
37) is unsatisfactory. 

6. Population statistics is represented by two examples concerning 
the sex ratio at birth (carelessly stating the probability of a male birth), 
see Note 16. The authors should not, however, be blamed for 
neglecting this field of statistics: millions perished in the GULAG, and 
the war claimed still more lives. For many years population statistics 
remained a touchy subject. The results of the census of 1937 were 
allegedly sabotaged and the Central Statistical Directorate decimated 
(Sheynin 1998). Kolmogorov (Anonymous 1955, pp. 156 – 158) 
avoided mentioning population statistics in his report of 1954.  

The complete absence of examples based on games of chance seems 
doubtful.  

II. Its American translation of 1961. It is dated since Gnedenko 
had inserted new additions and even a whole new part (Part 3). Then, 
the translator, Leo E. Baron, followed the Russian original without any 
comments and too often left the (naturally, Russian) structure of 
phrases unaltered. He, or the Editorial collaborator Sidney F. Mack, 
appended a Bibliography but it has no connection with the text itself. 

III. The authors.  Both are generally known, but I am adding some 
comments. I published a joint paper with Gnedenko (Gnedenko & 
Sheynin 1978) and certainly know that Gnedenko had successfully 
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studied the work of Chebyshev, Markov and Liapunov, but that he left 
aside the history of probability as developed by foreign scholars. This 
fact is clearly visible here as well as in his essay (Gnedenko 2001 and 
perhaps before that) which should have appeared 30 years earlier. 

Among other methodical and pedagogical contributions Khinchin  
left a concise treatise on mathematical analysis (1948), a possibly 
rather too shortened textbook for university students (1953) and a 
posthumously published essay on the Mises theory (1961). Gnedenko 
edited it and explained that the celebrated journal, Uspekhi 
Matematicheskikh Nauk, had rejected its manuscript. Unfortunately, 
the cause of rejection remains unknown.  

Little known is Kolmogorov’s acknowledgement (1933/1956, p. 
0003) inserted in his great book:  

I wish to express my warm thanks to Mr. Khinchine who has read 
carefully the whole manuscript and proposed several (mehrere!) 
improvements. 

On the other hand, Khinchin’s invasion of statistical physics (1943) 
was unsuccessful. Here is Novikov (2002, p. 334) whose paper 
deserves to be translated in full:  

Khinchin attempted to begin studying the justification of statistical 
physics, but physicists met his contribution on [that subject] with deep 
contempt. Leontovich [an eminent and widely known physicist] said … 
that Khinchin does not understand anything. 

But the most disturbing fact is the appearance of Khinchin’s (1937) 
glorification of the Soviet regime published at the peak of the Great 
Terror. In October 1937 a “Colloque des probabilitésˮ  took place at the 
Genève University. Among the participants were Cramér, Feller, 
Hostinsky and other most distinguished scholars who signed 
Compliments to Born on the occasion of his birthday (Staatsbibl. Berl. 
Preussische Kulturbesitz. Manuskriptabt. Nachl. Born 129). No 
wonder that there were no Soviet participants! Information about the 
Great Terror should have been prevented. So much for Khinchin’s 
kowtowing … 

In 1986, a second edition of the Russian translation of part 4 of 
Jakob Bernoulli’s Ars Conjectandi had appeared complete with three 
commentaries, one of which was mine. A subeditor told me to 
suppress my reference to Khinchin. He had not elaborated and I, 
regrettably, did not ask for any explanations. The Editor was the late 
Yu. V. Prokhorov, a well-known student of Kolmogorov.  

Oscar Sheynin
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Chapter 1. Probabilities 

1.1. The Notion of Probability. If under some conditions (the same 
target, distance and rifle) a certain shot achieves 92% of hits, it follows 
that on the average he hits the target about 92 times out of a hundred 
(and therefore fails approximately 8 times). Of course, he will 
sometimes be successful 91, or 90, or 93 or 94 times, he can even hit 
the target much less or much more than 92 times, but in the mean, after 
numerous attempts made under the same circumstances, this frequency 
of hits will remain invariable until there occurs some essential change 
(for example, this shot can raise his skill and achieve, again in the 
mean, 95 or more hits out of a hundred).  

Experience proves that in most cases shots indeed succeed about 92 
times out of a hundred. Less than 88 hits or more than 96 do occur, but 
only rarely. That figure, 92, the indicator of the skill of our shot, is 
usually very stable which means that under the same conditions the 
frequency of his hits will in most cases be almost invariable. Only as 
an exception it will somewhat considerably deviate from its mean 
value.  

One more example. In a certain workshop about 1.6% of the articles 
manufactured under given conditions are substandard which means 
that in a batch of, say, a thousand articles, about 16 will be useless. 
This figure will certainly be sometimes larger and at times smaller, but 
in the mean it will be near to 16. In most batches of a thousand articles, 
it will also be near to 16. We certainly suppose that all the conditions 
of work are invariable.  

Such examples can obviously be indefinitely multiplied. And we 
invariably see that, having homogeneous mass operations (when firing 
many times over, manufacturing articles en masse etc) going on under 
given conditions, the frequency of one or another occurring important 
event (of hitting the target, obtaining a substandard article etc) is 
almost always approximately the same; only rarely does it somewhat 
considerably deviate from some mean figure. 

We may therefore say that, under strictly established conditions, this 
mean figure is a typical indicator of the given mass operation. The 
frequency of hits characterizes the skill of the shot; the frequency of 
the occurred substandard articles estimates the quality of the 
production. It is thus self-evident that the knowledge of such 
indications is very important for most various areas: military science, 
technology, economics, physics, chemistry etc. They allow us to 
estimate previous mass phenomena as well as to foresee the outcome 
of some future mass operation.  

If on the average and under given conditions a shot hits the target 92 
times out of a hundred, we say that for him, and under those conditions, 
the probability of hitting the target amounts to 92% or 92/100 or 0.92. 
If in a certain workshop, again in the mean and under given conditions, 
16 substandard articles occur out of each thousand, we say that the 
probability of manufacturing a substandard article amounts there to 
0.016 or 1.6%. 

So what do we call the probability of an event in a given mass 
operation? Now, it is not difficult to answer this question. A mass 
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operation is always a numerous repetition of similar solitary operations 
(of shooting, of manufacturing an article etc). We are interested in a 
certain result of a solitary operation (of a successful single shot, of the 
quality of a given article etc) but, first of all, in the number of such 
results in some mass operation (in the number of hits, of substandard 
articles etc). 

The relative frequency of a successful result2 in a given mass 
operation we will indeed call tits probability. However, we should 
always bear in mind that the probability of one or another event (result) 
only makes sense if our mass operation goes on under strictly defined 
conditions. As a rule, any essential change of those conditions leads to 
a change of the appropriate probability.  

Suppose that in the mean an event A (for example, a successful hit 
of the target) is achieved a times out of b solitary operations (shots) of 
a mass operation. Then the probability of a successful outcome of a 
solitary operation is a/b, the ratio of the mean achieved number of 
such successful outcomes to the number of all the solitary operations 
comprising the given mass operation.  

If the probability of some event is a/b, it can obviously appear either 
more or less often than a times in each series of b solitary operations. 
Indeed, it only occurs about a times in the mean and in most series of b 
operations the number of the occurrences of that event will be near to 
a, especially if b is a large number.  

Example 1. In a certain town there were born during the first quarter 
of some year: 

In January, 145 boys (b) and 135 girls (g); in the next two months, 
respectively, 142 b and 136 g; and 152 b and 140 g. How high is the 
probability of a male birth? The relative frequencies were 

 
145/280 ≈ 0.518 = 51.8%; 142/278 ≈ 0.511 = 51.1%; 

152/292 ≈ 0.521 = 52.1% 
 
The arithmetic mean of those frequencies is near to 0.516 = 51.6%. 

Under given conditions it is the probability sought and the figure 0.516 
is well known in demography, the science that studies changes in 
populations. Under usual conditions the relative frequencies of male 
births during different intervals of time do not essentially deviate from 
that figure.  

Example 2. A remarkable phenomenon was discovered in the 
beginning of the 19th century: the Brownian motion named after the 
British botanist Brown. Minutest particles of a substance suspended in 
a liquid3 are moving chaotically and without any visible reason. For a 
long time the cause of this apparently spontaneous motion remained 
unknown, but the kinetic theory of gases provided a simple and 
exhaustive explanation. That motion is due to the shocks inflicted by 
the molecules of the liquid upon those particles. The kinetic theory 
allows us to calculate the probabilities that in a given volume of the 
liquid there will be none, one, two, … particles of the suspended 
substance.  

Series of experiments had been carried out for checking the 
theoretical results. We provide the data of 518 observations of 
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minutest particles of gold suspended in water made by the Swedish 
physicist Svanberg. He found out that in the observed space no 
particles occurred in 112 cases; 1 particle appeared 168 times; and 2, 3, 
4, 5, 6 and 7 particles appeared 130, 69, 32, 5, 1 and 1 time (times). 
The relative frequencies of those cases were 

 
112/518 = 0.216; 168/518 = 0.324; 130/518 = 0.251; 
69/518 = 0.133; 32/518 = 0.062; 5/518 = 0.010; and 

(twice) 1/518 = 0.002 
 
His results agreed very well with the theoretically predicted 

probabilities. 
Example 3. In a number of practically important problems it is very 

important to know the possible relative frequencies of the occurrence 
of different letters of the Russian [Cyrillic] alphabet. Thus, when 
compiling a set of types in a printing house it is impractical to collect 
the same number of each letter since some occur considerably oftener 
than the others. Studies of literary texts led to the estimation of those 
frequencies, see Table 1 borrowed from A. M. and I. M. Yaglom 
(1957/2007).  

[Table 1 lists the relative frequencies of the space between words 
and of the 31 letter of the alphabet (letters е and ё are combined). 
Some frequencies: the space, 0.175, letters о and (е and ё): 0.090 and 
0.072, then down to э and ф: both 0.002.] Thus, out of a thousand 
randomly chosen spaces and letters ф will occur twice; letters к and о 
and the space will be found 28, 90 and 175 times. The Table provides 
a sufficiently valuable indication for compiling sets of types. 

Such investigations have recently been also widely applied for 
revealing peculiar features of the Russian language and of the literary 
style of various authors. Information about wire messages can be 
applied for constructing optimal wire codes and thus ensuring a faster 
transmission of messages by a lesser number of signs. It turned out 
that the wire codes which had been applied during World War II were 
not sufficiently economical4. 

1.2. Impossible and Certain Events. The probability of an event is 
always either a positive number or zero. It cannot exceed 1 since the 
numerator of the fraction that determines it cannot be larger than its 
denominator (the number of successful operations cannot exceed the 
number of all of them). We will denote the probability of event A by 
P(A) so that for any event 

 
0 ≤ P(A) ≤ 1. 
 
The higher is P(A) the more often will event A occur. Thus, the 

higher is the probability of hitting the target, the more often will the 
shot achieve his goal, the more skilful he is. If, however, the 
probability of an event is very low, it occurs rarely, and if P(A) = 0, 
event A either never occurs or happens extremely rarely and can 
therefore be considered practically impossible. On the contrary, if P(A) 
is near to unity, the numerator of the fraction which expresses that 
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probability is near to its denominator, an overwhelming number of 
operations is successful and such events occur in most cases.  

If P(A) = 1, event A appears always or almost always and we may 
consider it practically certain, and reckon on its occurrence for sure. 
Then, if P(A) = 1/2, event A happens in about a half of the cases so that 
approximately the successes and failures are equally numerous. If P(A) 
> 1/2, event A occurs more often than fails; otherwise, if P(A) < 1/2, it 
happens less often than fails. 

How low should the probability of an event be for considering it 
practically impossible? No all-embracing answer is possible, all 
depends on how important is the problem at hand. Thus, 0.01 is a 
small number. If it is the probability that a shell will not explode on 
impact, about 1% of the fired shells will be useless. This can be 
accepted, but the same probability that a parachute will not open is 
certainly intolerable.  

These examples prove that for each problem the admissible low 
probability of an event ought to be established beforehand for 
harmlessly deciding that that event is practically impossible.  

1.3. A Problem. A shot hits the target with probability 0.80; another 
shot, under the same conditions, hits it with probability 0.70. Both fire 
at the same time and required is the probability of hitting the target at 
least once.  

Solution, first method. Suppose that they fire 100 times. The first 
shot will hit the target approximately 80 times and fail about 20 times. 
The second shot succeeds 70 times in the mean or 14 times when the 
first shot fails. The target is hit 80 + 14 = 94 times and the probability 
of success, when both are firing at the same time, is 94% or 0.94. 

Solution, second method. Again suppose that they fire a hundred 
times. The first shot fails about 20 times, the second shot fails 
approximately 30 times, or about 3 times in 10 [6 times in 20]. It can 
therefore be expected that 6 times the target will not be hit by either, 
but 94 times at least once. The result is the same as above. 

This problem is very easy, but nevertheless it leads to a very 
important conclusion: There are cases in which the probabilities of 
more complicated events can be expediently derived from the 
probabilities of simple or less complicated events. Actually, there are 
very many such cases, and not only in military science but in any 
science, in any practical activity in which mass phenomena are 
involved. 

It would certainly be inconvenient to devise a special method for 
solving each new problem; science invariably attempts to create 
general rules for solving similar problems mechanically or almost so. 
In the area of mass phenomena the science that shoulders the 
compilation of such rules is called the theory of probability, and here 
we offer its elements5. It is a chapter of mathematics just like 
arithmetic or geometry. Consequently, it works by strict reasoning and 
its tools are formulas, tables, charts etc. 
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Chapter 2. The Rule for the Addition of Probabilities 
2.1. The Derivation of the Addition Rule. This is the simplest and 

the most important rule applied for calculating probabilities. For each 
shot firing at a target, there exists some probability of hitting it from a 
given distance. Let 1 be a small circle drawn on the target, and denote 
concentric circles of increasing radii forming rings by 2, 3, 4 and 5 and 
the region partly situated beyond the target by 6. Suppose now that a 
certain shot has probability 0.24 of hitting circle 1, and of hitting ring 
2, 0. 17. We already know that in the mean 24 of his bullets out of a 
hundred will hit circle 1, and 17 bullets will hit ring 2. Call such 
results excellent and good and determine the probability that the result 
of one attempt will be either excellent or good.  

This is an easy problem. Approximately 24 and 17 bullets out of a 
hundred will ensure excellent and good results respectively, so that 41 
bullet will hit either the circle or the ring. The probability sought will 
be 0.24 + 0.17 = 0.41. It is thus the sum of the probabilities of an 
excellent and a good result. 

Another example. A man is awaiting either tram 26 or tram 16. He 
is standing at a tram stop for trams 16, 22, 26 and 31, and we suppose 
that all of them come approximately equally often. What is the 
probability that the first tram to appear will be of the required route? 
The probability that the first tram will be number 16 is obviously 1/4, 
and the same probability exists for tram 26. The probability sought is 
therefore 1/2, the sum of 1/4 and 1/4, of the two probabilities. 

And now the general reasoning concerning some mass operation. 
Suppose that it is established that on average in each series of b 
solitary operations 

 
a1 times result A1 was observed, a2 times result A2, etc. 
 
In other words, the probability of event A1 is a1/b, of event A2, a2/b, 

etc. Required is the probability that any one of those results will occur 
in a solitary operation. The event which interests us can be denoted by 
(A1 or A2 or …). In a series of b operations it occurs (a1 + a2 + …) 
times and the probability sought is 

 

1 2 1 2...
...

a a a a

b b b

+ + = + +   

 
This can be written as 
 
P(A1 or A2 or …) = P(A1) + P(A2) + … 
 

In both examples and here, in the general reasoning, we assumed that 
any two of the considered events (for example, A1 and A2) are mutually 
incompatible, i.e., that they cannot occur in the same solitary operation. 
Thus, a tram cannot be both needed and not needed, it either satisfies 
the passenger’s need or not.  

This assumption about mutual exclusiveness of the separate results 
is very important. If it does not take place, the addition rule stated 
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below becomes wrong and its application leads to gross mistakes. 
Consider for example the problem solved at the end of § 1.3. It was 
required to derive the probability that, when both shots fire at the same 
time, the target will be hit either by the first of them or by the second. 
Their probabilities of success were 0.8 and 0.7 and a direct application 
of the addition rule leads to probability of success equal to 0.8 + 0.7 = 
1.5. This is nonsense since probabilities cannot exceed unity. We 
arrived at this wrong and senseless result since we used the addition 
rule in a case in which it is inapplicable: those two individual results 
are compatible. It is quite possible that both shots hit the target at the 
same time. 

A considerable part of mistakes made by beginners when 
calculating probabilities is caused by such a wrong application of the 
addition rule. It is therefore necessary to be invariably on guard against 
this mistake. When applying the addition rule, check without fail 
whether each two of the studied events are really incompatible. 

And now we may formulate the general addition rule: 
The probability of the occurrence in some operation of any of the 

results A1, A2, …, An (no matter which) is equal to the sum of their 
probabilities if only each two of them are mutually incompatible.  

2.2. Complete Systems of Events. One third of a certain State loan 
bonds gradually wins during a twenty-year period, the other bonds are 
then repaid. Each bond thus wins with probability 1/3 and is repaid 
with probability 2/3. The two events are contrary which means that 
one and only one of them certainly occurs. The sum of their 
probabilities, 1/3 + 2/3, is unity which is not accidental.  

In general, if A1 and A2 are contrary events, and in a series of b 
operations A1 occurs a1 times, and A2 occurs a2 times, then, obviously, 
a1 + a2 = b. And indeed,  

 
P(A1) = a1/b, P(A2) = a2/b,  
P(A1) + P(A2) = a1/b + a2/b = (a1 + a2)/b = 1.  
 
The addition rule leads to the same result: since contrary events are 

mutually incompatible, 
 
P(A1) + P(A2) = P(A1 or A2). 
 

But the event (A1 or A2) is certain since it ought to occur by definition 
of contrary events and its probability is unity. We again have 
 

P(A1) + P(A2) = 1. 
 
The sum of the probabilities of two contrary events is unity. 
This rule can be very importantly generalized which is proved in a 

similar way. Suppose that there are such arbitrarily many (n) events A1, 
A2, …, An that one and only one of them occurs without fail in each 
solitary operation. Such group of events is called a complete system. In 
particular, any pair of contrary events makes up a complete system. 

The sum of the probabilities of the events comprising a complete 
system is unity. 
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Indeed, by the definition of a complete system any two of its events 
are mutually incompatible and 

 
P(A1) + P(A2) + … + P(An) = P(A1 or A2 or … or An). 
 

The right side of this equality is the probability of a certain event and 
therefore equals unity:  
 
    P(A1) + P(A2) + … + P(An) = 1, QED. 

 
Example 1. A shot firing at a target described in § 2.1 hits, in the 

mean, 44 times the circle 1; 30, 15, 6, 4 and 1 hit-point (points) is (are) 
contained within rings 2, 3, 4, 5 and region 6, and 

 
44 + 30 + 15 + 6 + 1 = 100. 
 
These results obviously constitute a complete system of events 

whose probabilities are 0.44, 0.30, 0.15, 0.06, 0.04 and 0.01. Their 
sum is unity. Some hit-points in region 6 cannot be counted, but the 
appropriate probability can be calculated by subtracting the sum of all 
other probabilities from unity. 

Example 2. At a certain factory out of each hundred stoppages of a 
loom which required the weaver’s attention, 22, 31, 27, and 3 in the 
mean occurred because of four definite main causes respectively (and 
the other stoppages had other causes). The probabilities of those four 
causes are 0.22, 0.31, 0.27 and 0.03. Their sum is 0.83 and the 
probability of the other causes is 1 – 0.83 = 0.17 since all the causes 
comprise a complete system of events.  

2.3. Examples. The theorem about the complete system of events 
often successfully serves as a foundation for the so called prior 
calculation of probabilities. Suppose that we study the distribution of 
cosmic particles over a rectangular surface subdivided into 6 identical 
squares. We have no sufficient reason to assume that those particles 
will more often come to rest on one of these squares rather than on 
another6.  

So let us assume that the appropriate probabilities p1, p2, …, p5, p6 
are identical. If we are only interested in observing the rectangular 
surface, each of the six probabilities will be equal to 1/6 since their 
sum is unity by the theorem above. This conclusion depends on 
assumptions and ought to be verified by experiments, but in such cases 
we are so accustomed to a positive answer that are practically fully 
justified to rely on those theoretical assumptions even before 
experimentation.  

In such cases we usually say that the given operation can have n 
different equally probable results; here, the cosmic particles can come 
to rest on any of the six squares with probability 1/6. Such prior 
calculations are important since they allow us to foresee events when 
mass operations are either impossible or extremely difficult to carry 
out. 
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Example 1. The numbers of Soviet State bonds had usually been 
expressed by five digits (for example, 59607). Required is the 
probability that the last digit of a randomly chosen winning bond is 7.  

According to the definition of probability, we have to consider a 
long table of drawings and find out in how many cases the last digit of 
the number of winning bonds was seven. The ratio of the number of 
those cases to the complete number of winning bonds will be the 
probability sought. However, each of the 10 digits 0, 1, 2, …, 8, 9 has 
the same chance to be the last one of the number of the winning bond. 
Without hesitating, we assume that the probability sought is 0.1. 
Verification of this prevision is easy: select the table of any drawing 
and convince yourself in that each of the 10 digits is the last one in the 
numbers of the winning bonds in approximately 1/10 of all cases7. 

Example 2. A telephone line between points A and B two kilometres 
apart was torn somewhere. Required is the probability that the rupture 
occurred not farther than 450 m from A. So let us mentally separate the 
entire distance AB into metres. Since all the appeared intervals are 
practically homogeneous, we may assume that the probabilities of the 
rupture occurring in each of them are identical. Similar to the above, 
we easily decide that the probability sought is 450/2000 = 0.225.  
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Chapter 3. Conditional Probabilities 

and the Multiplication Rule 
3.1. The Notion of Conditional Probability. Suppose that two 

factories are manufacturing light bulbs and that they produce 70 and 
30% of the entire output respectively with standard bulbs8 comprising 
83 and only 63% of their respective totals. It is not difficult to 
calculate that in the mean the customer gets 77 standard bulbs out of a 
hundred or that the probability of buying a standard bulb is 0.77. 
Indeed, 0.7·83 + 0.3·63 = 77. But suppose now that you buy bulbs only 
manufactured by the first factory, then that probability will be 0.83.  

This example shows that when the general conditions under which 
an operation is proceeding are coupled with an essentially new 
condition (only the bulbs produced by the first factory are taken into 
account) the probability of one or another outcome of a solitary 
operation can change. This is evident since the notion itself of 
probability requires that the set of conditions, under which the given 
mass operation is going on, is strictly established. Generally, an 
addition of some new condition to that set essentially changes it. The 
mass operation will continue under new conditions, it will be another 
operation and consequently the probabilities of one or another ensuing 
result will change. 

And so, we have two differing probabilities of the same event, of a 
purchase of a standard bulb. Until we impose an additional condition 
(until taking into account the manufacturer) we have an absolute 
probability, 0.77, of buying a standard bulb; after adding the new 
condition we have a conditional probability of the same event, 0.83, 
somewhat differing from 0.77. 

Denote the event of purchasing a standard bulb by A, and let B be its 
being manufactured by the first factory. Then P(A) usually denotes the 
absolute probability of A, and PB(A), the probability of the same event 
provided that the bulb was manufactured by the first factory. Then 

 
P(A) = 0.77, PB(A) = 0.83. 
 
Since probabilities, strictly speaking, are only defined under some 

exactly determined conditions, then, in the literal sense, each 
probability is conditional whereas absolute probabilities do not exist. 
However, in most problems all the studied operations are proceeding 
under a definite set of conditions K which are supposed to be 
invariably satisfied. When no other conditions except K are imposed, 
we call the ensuing probability absolute, and conditional if in addition 
some other strictly stipulated condition(s) is (are) imposed. 

Thus, in our example we certainly assume that bulbs are 
manufactured under some definite conditions, invariable for all of 
them. This assumption is so unavoidable and self-evident that we did 
not even deem it necessary to mention it. If, when purchasing a bulb, 
we do not impose any additional condition, the probability of one or 
another result of its test is called absolute. When some additional 
conditions are imposed, the appropriate probabilities will be 
conditional.  
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Example 1. Above, the probability of a bulb being manufactured by 
the second factory is obviously 0.3. It is established that the bulb is 
standard and required is the probability that it was manufactured by 
that second factory.  

Out of every thousand bulbs put on sale 770 are on the average 
standard, 581 of them manufactured by the first factory, and 189, by 
the second9. The probability sought is 189/770 ≈ 0.245. This is the 
conditional probability calculated under the assumption that the bulb is 
standard, and we may conclude that 

 
P( ) 0.3,  P ( ) 0.245AB B= ≈   

 
where B  denotes the failure of event B. 

Example 2. Observations made during many years in a certain 
district established that, out of 100,000 children aged 10, 82,277 in the 
mean live until 40 years and 37,977, until 70 years. Required is the 
probability that a man [the sexes are not distinguished] 40 years old 
will live until 70 as well. The probability sought is 37,977/82,277 ≈ 
0.46. 

Denote by A and B the events of a child 10 years old living until 70 
and 40 years. Then, obviously, 

 
P(A) = 0.37977 ≈ 0.38, PB(A) ≈ 0.46.  
 
3.2. Derivation of the Rule for Multiplying Probabilities. Return 

to the first example of § 3.1. Out of a thousand bulbs put on sale the 
second factory manufactures 300, 189 of them in the mean being 
standard. The probability that the bulb was manufactured by the 
second factory (eventB ) is 

 
P(B ) = 300/1000 = 0.3 
 

and the probability of its being standard given that it was 
manufactured by the second factory is 
 

BP (A) = 189/300 = 0.63.  

 
And so, out of the 1000 bulbs 189 are manufactured by the second 

factory and are standard and the probability of the joint occurrence of 
events A and B  is  

 
P(A and B ) = 189/1000 = (300/1000)(189/300) = P(B ) BP (A). 

 
This multiplication rule can easily be extended on the general case. 

Suppose that result B occurs m times in the mean in each series of n 
operations, and in each new series of m such operations l times appears 
result A. Then this joint occurrence of events B and A in each series of 
n operations will occur in the mean l times. Thus,  

 
P(B) = m/n, PB(A) = l/m, P(A and B) = l/n = (m/n)(l/m) = P(B)PB(A).  (3.1) 
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The multiplication rule.  The probability of a joint occurrence of 

two events is equal to the product of the probability of the first event 
by the conditional probability of the second calculated under the 
assumption that the first event had occurred. 

We may certainly say that any of the two events is the first one so 
that in addition to formula (3.1) we may just as well say that 

 
P(A and B) = P(A)PA(B).                                                                   (3.1*) 
 

An important relation follows: 
 

P(A)PA(B) = P(B)PB(A).                                                                      (3.2) 
 
In our example we had 
 
P(A and B) = 189/1000, P(A) = 77/100, PA( B ) = 189/770 
 

and formula (3.1*) is confirmed. 
Example. 96% of the articles manufactured at a certain factory are suitable 

(event A) and 75% of them are of top quality (event B). Required is the 
probability that an article manufactured there is of top quality. We ought to 
find P(A and B) since a top quality article (event B) should first of all be 
suitable (event A).  

According to the conditions of the problem  
 
P(A) = 0.96, PA(B) = 0.75 
 

and by formula (3.1*) 
 
    P(A and B) = 0.96·0.75 = 0.72. 

 
3.3. Independent Events. After a test of tensile strength of two 

skeins of thread produced by different looms it occurred that a 
specimen of some length taken from the first skein endures a certain 
standard load with probability 0.84, and with probability 0.77 if taken 
from the second skein10. Required is the probability that both these 
specimens endure that load (event A and B).  

We require P(A and B) and apply the multiplication rule 
 
P(A and B) = P(A)PA(B). 
 

Here P(A) = 0.84, but what is the meaning of PA(B)? According to the 
general definition of conditional probabilities, it is the probability that 
the specimen taken from the second skein endures the load if the 
specimen from the first skein endures it. However, the probability of B 
does not depend on event A occurring or not. Practically speaking, it 
means that the per cent of tests in which B takes place does not depend 
on the strength of the specimen taken from the first skein11: 
 

PA(B) = P(B) = 0.78, P(A and B) = P(A)P(B) = 0.84·0.78 = 0.6552.  
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As compared with all the previous examples, this one is peculiar in 
that, as we see, the probability of B does not change when we add to 
the general conditions the requirement that A ought to occur. In other 
words, the conditional probability PA(B) is equal to the absolute 
probability P(B). In this case we simply say that event B does not 
depend on event A. 

It is easy to check that in this case A does not depend on B either. 
Indeed, since PA(B) = P(B), then, by formula (3.2), PB(A) = P(A) as 
well which indeed means that event A does not depend on event B. 
Independence of two events is thus a mutual property. We see that for 
independent events the multiplication rule becomes especially simple: 

 
P(A and B) = P(A)P(B).                                                              (3.3) 
 
Whenever we apply the addition rule we ought to establish 

beforehand that the given events are incompatible. Just the same, 
whenever we apply the rule (3.3) we ought to establish whether the 
events A and B are independent. Neglect of this indication leads to a 
large number of mistakes. If the events A and B are dependent, formula 
(3.3) becomes wrong and should be substituted by a more general 
formula (3.1) or (3.1*). 

Rule (3.3) is easily generalized on the probability of three or more 
independent events. Suppose we have three mutually independent 
events A, B and C. This means that the probability of neither of them 
depends on whether the other events occurred or not. And since the 
three events are independent, according to formula (3.3)  

 
P(A and B and C) = P(A and B)P(C). 
 

Again apply formula (3.3) for determining P(A and B), then 
 
P(A and B and C) = P(A)P(B)P(C).                                     (3.4) 
 
The same rule obviously takes place when the studied group 

consists of any number of events if only they are mutually independent, 
if the probability of each does not depend on whether the other events 
occurred or not. 

The probability of the joint occurrence of any number of mutually 
independent events is equal to the product of their probabilities. 

Example 1. A worker services three lathes. The probabilities that no 
service is needed for an hour are 0.9, 0.8 and 0.85 respectively. 
Required is the probability that during an hour service will not be 
needed at all.  

Assume that the lathes are operating independently from each other. 
Then, by formula (3.4), the probability sought is 

 
0.9·0.8·0.85 = 0.612.  
 
Example 2. Retain the conditions of the previous example and 

determine the probability that during an hour at least one lathe will not 
require attention. The probability sought is of the type P(A or B or C) 
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and we certainly begin thinking about the addition rule. However, we 
see at once that that rule is here inapplicable: any two events, and even 
all three of them are compatible with each other. Indeed, two or even 
three lathes can certainly continue working during an hour. And even 
independently from this consideration we immediately see that the 
sum of the three given probabilities considerably exceeds unity and 
cannot therefore be any probability at all.  

For solving this problem we note that the contrary probabilities of 
the lathes requiring attention are 0.1, 0.2 and 0.15. They are mutually 
independent and by rule (3.4) the probability that all of them occur is 

 
0.1·0.2·0.15 = 0.003. 
 
However, the events all three lathes require attention and at least 

one does not require attention are contrary, their sum is unity and the 
probability sought is therefore 1 – 0.003 = 0.997. When a probability 
of an event is so high, we may assume that it is practically certain. 
This means that during an hour at least one lathe will continue working. 

Example 3. 250 devices are tested under specific conditions. The 
probability that a definite device fails during an hour is 0.004, the 
same for all of them. Required is the probability that during an hour at 
least one device fails.  

For one device the probability of working during an hour is 1 – 
0.004 = 0.996 and the probability that none fails is, by the 
multiplication rule for mutually independent events, 0.996250. The 
probability sought is 1 – 0.996250 ≈ 5/8. 

Although the probability of a failure for each device is not high [is 
tiny] , for a large number of them the probability of at least one failure 
is rather considerable. The reasoning in the two last examples can be 
easily generalized and lead to an important general rule. In both cases 
we discussed probabilities P(A1 or A2 or … or An) of the occurrence of 
at least one of some mutually independent events A1, A2, …, An. 
Denote by kA  the failure of event Ak, then Ak and kA  are contrary and  

 
P(Ak) + P( kA ) = 1. 

 
On the other hand, events 1,A 2,A …, nA  are obviously independent 

so that 
 
P( 1A  and 2A  and … and nA ) =  

P( 1A )P( 2A ) … P( nA ) = [1 – P(A1)] [1 – P(A2)] … [1 – P(An)]. 

 
Finally, events (A1 or A2 or … or An) and ( 1A  and 2A  and … and nA ) 

are obviously contrary (either at least one event Ak occurs or all the 
events kA  take place). Therefore, 

 
P(A1 or A2 or … or An) = 1 – P( 1A  and 2A  and … and nA ) = 

[1 – P(A1)] [1 – P(A2)] … [1 – P(An)].                                     (3.5) 
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This important formula allows us to calculate the probability of the 

occurrence of at least one of the events A1, A2, …, An given their 
probabilities. It is valid then and only then when all those events are 
mutually independent. In particular, when all the events Ak have the 
same probability p (as in Example 3), 

 
P(A1 or A2 or … or An) =1 – (1 – p)n.                                        (3.6) 
 
Example 4. A machine part is a right parallelepiped. It is suitable if 

the length of each of its edges deviates from the standard not more 
than by 0.01 mm. The probabilities of such unacceptable deviations of 
lengths, widths and heights are 

 
p1 = 0.08, p2 = 0.12, p3 = 0.1. 
 
Required is the probability that a machine part is unsuitable. This 

happens when at least one deviation exceeds 0.01 mm. Deviations of 
the three dimensions are usually considered mutually independent 
(since they are occasioned by different causes) and we may therefore 
apply formula (3.5): 

 
1 – (1 – p1)(1 – p2)(1 – p3) ≈ 0.27. 
 
Out of each hundred machine parts 73 in the mean will be suitable. 
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Chapter 4. Corollaries of the Addition and Multipli cation Rules 
4.1. Derivation of Some Inequalities. Return to our example 

concerning light bulbs (§ 3.1) once more and denote 
 
A, a standard bulb; A , a substandard bulb;  

B and ,B  a bulb manufactured by the first and the second factory 
 
Events A and A are obviously contrary just as events B andB . If a 

bulb is standard (event A), it is manufactured either by the first (event 
A and B) or by the second (event A and B ) factory. These two events 
are obviously incompatible and by the addition rule 

 
P(A) = P(A and B) + P(A and B ),                                            (4.1) 
P(B) = P(A and B) + P(A  and B).                                            (4.2) 
 
Consider now event (A or B). There are three possibilities for its 

occurrence: A and B; A and B ; and A  and B. Any two of them are 
incompatible and by the addition rule we have 

 
P(A or B) = P(A and B) + P(A and B ) + P(A  and B).             (4.3) 
 
Adding up equations (4.1) and (4.2) and taking into account 

equation (4.3) we easily derive  
 
P(A) + P(B) = P(A and B) + P(A or B), 
 
P(A or B) = P(A) + P(B) – P(A and B).                                     (4.4) 
 
This is a very important result. True, we considered a particular 

example, but our reasoning was so general that the conclusion can be 
thought to hold for any pair of events A and B. Until now, we only 
derived expressions for the probability P(A or B) under very particular 
assumptions about the connection between those events, A and B (at 
first, we considered them incompatible, then mutually independent).  

However, formula (4.4) takes place without any additional 
assumptions for any pair of events A and B. True, we should not forget 
an essential difference between formula (4.4) and our previous 
formulas. Until now, the probability P(A or B) had always been only 
expressed through P(A) and P(B) and we were then invariably able to 
derive a single value for the event (A or B). 

The essence of formula (4.4) differs: in addition, we have to know 
P(A and B), the probability of the joint occurrence of the events A and 
B. In the general case, in which the connection between these events is 
arbitrary, it is usually not easier to calculate that probability than the 
probability P(A or B). Consequently, formula (4.4) is rarely applied 
although its theoretical importance is very considerable.  

And now, by issuing from it, we will easily derive our previous 
formulas. If events A and B are incompatible, the event (A and B) is 
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impossible, P(A and B) = 0, and formula (4.4) leads to the addition 
formula 

 
P(A and B) = P(A) + P(B). 
 
Then, if A and B are independent, formula (3.3) provides 
 
P(A and B) = P(A)P(B) 
 

and formula (4.4) leads to 
 
    P(A or B) = P(A) + P(B) – P(A)P(B) = 1 – [1 – P(A)][1 – P(B)]  

 
which is formula (3.5) for n = 2. 

We will now derive an important corollary of the same formula 
(4.4). Since identically P(A and B) ≥ 0, it follows that always 

 
P(A or B) ≤ P(A) + P(B).                                                       (4.5) 
 
This inequality can be generalized on any number of events. Thus, 

for three events, 
 

P(A or B or C) ≤ P(A or B) + P(C) ≤ P(A) + P(B) + P(C) 
 

and we can now pass on to four events etc. Here is the general result: 
The probability of the occurrence of at least one event out of some 

number of them is never higher than the sum of their probabilities. 
Equality only takes place when any two of those events are 

incompatible. 
4.2. The Formula for Complete Probability. Return once more to 

our example concerning light bulbs (§ 3.1) and to our notation in § 4.1. 
We have more than once seen that the probabilities that a standard 
bulb was manufactured by the second and the first factories were 

 
( )BP A  = 189/300 = 0.63, PB(A) = 581/700 = 0.83. 

 
Suppose that both these probabilities are known as well as the 

probabilities that the bulb was manufactured by those factories [for 
some reason mentioned in the inverted order: by the first and 
second factories] 

 
P(B) = 0.7, P(B ) = 0.3. 

  
Required is the absolute probability P(A) that a bulb is standard 

without any assumptions about its manufacturer. Let us reason in the 
following way. Denote by E and F the compound events that the bulb 
was manufactured by the first and the second factory. Each bulb was 
manufactured either by the first or the second factory and therefore 
event A is tantamount to event (E or F). These events are incompatible 
and by the addition rule 
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P(A) = P(E) + P(F).                                                                    (4.6) 
 
On the other hand, as it follows from the above, event E is 

tantamount to event (A and B). Therefore, according to the 
multiplication rule,  

 
P(E) = P(B)PB(A) 
  

and in exactly the same way 
 

P(F) = P( ) ( ).BB P A   

 
Substituting these two expressions in equality (4.6) we obtain 
 

    P(A) = P(B)PB(A) + P( ) ( )BB P A ,  

 
the formula that solves our problem. Substituting the given data we get 
P(A) = 0.77. 

Example. Seeds of wheat of sort I are stored for sowing. They 
contain a small admixture of seeds of sorts II, III, and IV. Choose a 
seed and denote its being of these sorts by A1, A2, A3 and A4 
respectively. It is known that  

 
P(A1) = 0.96, P(A2) = 0.01, P(A3) = 0.02 and P(A4) = 0.01. 
 
The sum of these probabilities is unity as it should be for a complete 

system of events. The probabilities that an ear containing not less than 
50 grains will grow out of a seed are respectively 0.50, 0.15, 0.20 and 
0.05. Required is the absolute probability of an ear having not less than 
50 grains (event K).  

By the conditions of the problem  
 

1 2 3 4
P ( ) 0.50,  P ( ) 0.15,  P ( ) 0.20,  P ( ) 0.05.A A A AK K K K= = = =   

 
The probability sought is P(K). Denote by E1 the event that a seed is 

of sort I and that the ear which grew out of it has not less than 50 
grains. That event, E1, is therefore tantamount to event (A1 and K). We 
also denote by E2, E3 and E4 similar events (A2 and K), (A3 and K) and  
(A4 and K).  

For event K to arrive the occurrence of one of the events E1, E2, E3 
or E4 is necessary. Since any two of them are incompatible, the 
addition rule provides 

 
P(K) = P(E1) + P(E2) + P(E3) + P(E4).                                        (4.7) 
 
On the other hand, by the multiplication rule  
 
P(E1) = P(A1 and K) = P(A1)

1
P ( )A K   
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and similar expressions hold for E2, E3 or E4. Substituting these 
expressions into formula (4.7) we get 
 

P(K) = P(A1)
1

P ( )A K  + P(A2)
2

P ( )A K  +  

            P(A3)
3

P ( )A K  + P(A4)
4

P ( )A K ,                                        (4.8) 

 
a formula that evidently answers our problem. Substituting the given 
data we obtain P(K) = 0.486.  

The examples considered here in detail lead to an important general 
rule which we are now able to formulate and justify without any 
difficulties. Suppose that a given operation admits results A1, A2, …, 
An constituting a complete system of events. To recall: it means that 
any two of those events are incompatible with each other and one of 
them occurs for sure.  

Then for any possible result K of this operation to occur we have 
formula (4.8) with n terms instead of 4. It is usually called the formula 
of complete probability. It is proved just like it was done in the two 
examples above. First, the appearance of event K requires the 
occurrence of one of the events (Ai and K), and, by the addition rule,  

 

P(K) = ( )
1

P and  i

n

i

A K
=
∑ .                                                        (4.9) 

 
Second, according to the multiplication rule,  
 
P(Ai and K) = P(Ai) P ( )

iA K . 

 
Substituting this expression in equality (4.9) we will indeed arrive at 
formula (4.8). 

4.3. The Bayes Formula. The formulas of § 4.2 allow us to derive 
an important result having numerous applications. We begin by a 
formal justification and postpone the ascertaining of the meaning of 
the final formula. 

Suppose that once more events A1, A2, …, An constitute a complete 
group of the results of some operation. If K is one of these results, then, 
by the multiplication rule,  

 
P(Ai and K) = P(Ai) P ( )

iA K  = P(K)PK(Ai), 1 ≤ i ≤ n 

 
and therefore  

 

PK(Ai) =
P( )P ( )

,  1 .
P( )

ii AA K
i n

K
≤ ≤   

 
Expressing the denominator by the formula of complete probability 

(4.8) we get the Bayes formula 
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PK(Ai) = 

1

P( )P ( )
,  1 .

P( )P ( )

i

r

i A

n

r A
r

A K
i n

A K
=

≤ ≤
∑

                                       (4.10) 

 
This formula is mostly applied as is shown in the following example. 

Suppose that a target is situated on a segment MN which we mentally 
separate into five small intervals c2, b2, a, b1, c1 in that order. The exact 
location of the target is unknown and we can only say that the 
probabilities of its being on those intervals are 

 
P(a) = 0.48, P(b1) = P(b2) = 0.21, P(c1) = P(c2) = 0.05. 
 
The sum of these probabilities is unity. The highest probability 

corresponds to interval a, and we naturally fire at it. However, owing 
to unavoidable errors the target can also be hit if it is located elsewhere. 
The probabilities of the hits are Pa(K) = 0.56 if the target is located on 
a. Other probabilities are  

 

1 2 1 2
P ( ) 0.18,  P ( ) 0.16,  P ( ) 0.06,  P ( ) 0.02b b c cK K K K= = = =   

 
[the sum of these probabilities is 0.98].  

Suppose now that the target is hit (event K has occurred). The 
probabilities of the location of the target, i. e., the numbers P(a), 
P(b1), …, are estimated anew12. The qualitative essence of this 
operation is evident even without any calculations. If we aimed at 
interval a and hit the target, the probability P(a) ought to be heightened.  

However, we wish to estimate numerically this reappraisal, to derive 
an exact expression of the probabilities PK(a), PK(b1), …given that the 
target was hit. The Bayes formula (4.10) immediately provides the 
answer: 

 

PK(a) = 
1 2

a

a 1 2b

P(a)P ( )

P(a)P ( ) P(b )P ( ) ... P(c )P ( )c

K

K K K+ + +
 ≈ 0.8. 

 
We see that PK(a) is indeed higher than P(a).  

In a similar way we can easily calculate the probabilities PK(b1), … 
of the other possible locations of the target. When actually calculating, 
it is expedient to note that the expression of the probabilities as 
provided by the Bayes formula only differ in their numerators; the 
denominators are the same and equal to P(K) ≈ 0.34. 

We can describe the general pattern in the following way. The 
conditions of an operation contain an unknown element about which n 
different hypotheses A1, A2, …, An constituting a complete system of 
events can be formulated. We somehow know their prior 
probabilities13 P(Ai) and we also know that according to hypothesis Ai 
some event K (for example, a hit of the target) has probability P ( )

iA K , 

1 ≤ i ≤ n. This is the probability of event K provided that hypothesis Ai 
is true.  
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If K occurred as the result of an experiment, the probabilities of the 
hypotheses Ai ought to be reappraised, and their new probabilities 
PK(Ai) determined. This is what the Bayes formula does. 

Artillery firing begins by preliminary shots for specifying the 
location of the target. The unknown element can also be any other 
condition of firing (in particular, some peculiar feature of the gun [?]). 
Very often a few such shots are fired, and the problem consists then in 
calculating the new probabilities of the hypotheses on the basis of the 
results obtained. In all such cases the Bayes formula easily solves the 
problem at hand14.  

For the sake of brevity we denote 
 
P(Ai) = Pi, P ( )

iA K  = pi, 1 ≤ i ≤ k [n]. 

 
The Bayes formula is then written simpler: 
 

PK(Ai) = 

1

,i i
n

r r
r

P p

P p
=
∑

 1 ≤ i ≤ n. 

 
Suppose that a volley of s trial shots were fired and result K 

appeared m times and failed (s – m) times. Denote by K* this result of 
the volley. We may assume that the results of the separate shots are 
mutually independent events. If hypothesis Ai is true the probability of 
result K is pi and consequently the probability of the contrary event, of 
the failure of K, is (1 – pi). Then, by the multiplication rule for 
mutually independent events, the probability that the result K occurred 
after m definite shots is pi

m(1 – pi)
s–m.  

Any m shots out of s can be selected and K can therefore occur in 
m
sC incompatible ways (in the number of combinations of s elements 

taken m at a time). By the addition rule we therefore have 
 
P ( *) (1 ) ,

i

m m s m
A s i iK C p p −= −  1 ≤ i ≤ n 

 
and according to the Bayes formula 
 

*

1

(1 )
P ( ) ,

(1 )

m s m
i i i

K i n
m s m

r r r
r

P p p
A

P p p

−

−

=

−=
−∑

 1 ≤ i ≤ n.                                  (4.11) 

 
This is the solution of the problem. Such problems occur not only in 
artillery but in other fields of human activities as well.  

Example 1. Return to the beginning of this section. Required is the 
probability that the target is situated in interval a if two shots aimed at 
that interval were successful. 

Denote a reiterated hit by K*. By formula (4.11) we have 
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1

2
a

* 2 2
a 1

P(a)[P ( )]
P ( ) .

P(a)[P ( )] P( )[P ( )] ...K
b

K
A

K b K
=

+ +
  

 
A simple calculation which we leave for the readers will convince 

them that the probability that the target is situated in interval a will 
heighten still more. 

Example 2. An article manufactured at a certain factory is standard 
with probability 0.96. The articles are tested in a simplified way: a 
positive answer1 is provided with probability 0.98 if the article is 
standard but only with probability 0.05 otherwise. Required is the 
probability that an article which stood two tests is standard. 

Here, the complete system of hypotheses is composed of two 
contrary events: the article is, or is not standard. Their prior 
probabilities are P1 = 0.96 and P2 = 0.04. Under these hypotheses the 
probabilities that an article will stand the test are p1 = 0.98 and p2 = 
0.05. After the two tests the probability of the first hypothesis, 
according to formula (4.11), will be  

 

    
2 2

1 1
2 2 2 2

1 1 2 2

0.96 0.98
0.9999.

0.96 0.98 0.04 0.05

P p

P p P p

⋅= ≈
+ ⋅ + ⋅

  

 
In one case out of ten thousand we can be mistaken and consider a 

standard article substandard. Usually this result is good enough. 
Example 3. After examining a patient three illnesses A1, A2 and A3 

were suspected and their probabilities under given conditions were 
 
P1 = 1/2, P2 = 1/6 and P3 = 1/3. 
 

An additional analysis, which provides a positive answer with 
probabilities 0.1, 0.2 and 0.9 respectively, was prescribed and carried 
out 5 times. In four cases the result was positive and required are the 
probabilities of each illness after these analyses.  

By the multiplication rule in case of illness A1 the probabilities of 
the stated outcomes of the analyses are 

 
p1 = 4

5C 0.14·0.9, p2 = 4
5C 0.24·0.8, p3 = 4

5C 0.94·0.1. 

 
According to the Bayes formula we find that after the analyses the 
probabilities of those illnesses become respectively, 
 

1 1 2 2 3 3

1 1 2 2 3 3

,  ,  

+ + 

P p P p P p

P p P p P p
.  

 
When substituting the data, we have identical denominators 
 

1/2·0.14·0.9 + 1/6·0.24·0.8 + 1/3·0.94·0.1 
 

and numerators  
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1/2·0.14·0.9, 1/6·0.24·0.8, 1/3·0.94·0.1.  
 
Calculation provides probabilities ca. 0.002, ca. 0.01 and ca. 0.988. 

The three events A1, A2 and A3 constitute, as they had previously, a 
complete system of events so that the sum of the derived probabilities 
is unity, again as previously, which serves for checking the calculation.  
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Chapter 5. The Bernoulli Pattern 

5.1. Examples. The length of about 75% of the fibres of cotton of a 
certain sort is shorter than 45 mm (short fibres or short) and about 25%, 
longer than, or equal to 45 mm (long fibres or long). Required is the 
probability that two out of three randomly selected specimens are short 
and one is long.  

Denote by A the event of selecting a short fibre and by B, the 
contrary event. Then, evidently, P(A) = 3/4, P(B) = 1/4. Denote also by 
AAB the compound event consisting of two short first specimens and a 
long third specimen. The meaning of notation BBA, ABA etc is evident. 
Required is the probability of event C, of two short fibres and one long. 
It occurs in three possible ways,  

 
AAB, ABA and BBA.                                                                (5.1) 
 
Any two of them are mutually inconsistent and by the addition rule 
 
P(C) = P(AAB) + P(ABA) + P(BAA). 
 
The terms in the right side are identical since the selection of the 

specimens can be assumed mutually independent. According to the 
multiplication rule for mutually independent events the probability of 
each pattern (5.1) is a product of three factors two of which are P(A) = 
3/4 and one is P(B) = 1/4 and thus is (3/4)2·1/4 = 9/64 and 

 
P(C) = 3·9/64 = 27/64, 
 

which is our answer. 
Example 2. Observations lasting many decades have established that 

out of a thousand births 515 newborn babies are boys16 and 485 are 
girls. A family has 6 children and it is required to determine the 
probability that among them there are not more than 2 girls. 

For the studied event to occur there should be 0, 1 or 2 girls; denote 
the respective probabilities of those events by P0, P1 and P2. By the 
addition rule 

 
P = P0 + P1 + P2.                                                                   (5.2) 
 
It is easiest to determine P0. A male or female birth can be 

considered independent from the births of the other babies and by the 
multiplication rule the probability of all six male births is 

 
P0 = 0.5156 ≈ 0.018. 
 
There are 6 ways for only one girl in the family: she can be the first, 

the second, …, the sixth child. Suppose that she was the fourth. 
According to the multiplication rule the probability of this case is 
equal to the product of six fractions, five of them equal to 0.515 and 
one to 0.485. It thus equals 0.5155·0.485. All the other possible cases 
have the same probability and by the addition rule  
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P1 = 6·0.5155·0.485 ≈ 0.105. 
 
Now P2. We note at once that there are many possibilities for the 

birth of two girls (for example, both the second and the fifth babies are 
girls, the other babies are boys). The probability of each such case is 
0.5154·0.4852 which should be multiplied by the number of the 
possible cases. That number is 2

6C =  15 and 

 
P2 = 15·0.5154·0.4852 ≈ 0.247. 
 
Finally 
 
P = P0+ P1 + P2 ≈ 0.018 + 0.105 + 0.247 = 0.370. 
 
Somewhat rarer than in four cases out of ten (with probability P ≈ 

0.37) the number of girls in such families will not be more than 1/3 of 
all the children (and not less than 2/3 of them will be boys). 

5.2. The Bernoulli Formulas. In the previous sections we became 
acquainted with repetitions of trials with a certain event A possibly 
occurring in each. The word trial  has many various meanings. When 
firing at a target, each shot is a trial; when the working life of light 
bulbs is ascertained, the test of each is a trial; when the structure of 
many newborn babies is studied with respect to sex, weight or height, 
the examination of each is a trial. In general, we will understand a trial 
as a realization of some conditions under which a studied event can 
happen. 

Consider now one of the main patterns of probability theory which 
has many applications in various branches of science and is very 
important for that mathematical theory itself. This pattern consists in a 
sequence of mutually independent trials, i. e., such that the probability 
of one or another result in any of them does not depend on the results 
of previous or future trials. In addition, according to this pattern a 
certain event A can occur or not [?] in each trial with probability p 
independent from the number of the trial. The pattern came to be 
called after Jakob Bernoulli, an [a most] eminent Swiss mathematician 
of the end of the 17th century. 

We have already considered the Bernoulli pattern in our examples; 
suffice it to recall those of the previous section. Now, however, we are 
studying the following general problem whose particular cases were 
considered in all the examples of this chapter.  

Problem. Under some conditions the probability that event A occurs 
in each trial is p. Required is the probability that in n mutually 
independent trials it will appear k times and fail (n – k) times. 

The event whose probability is sought can be broken down into a 
series of events. For obtaining one such event we ought to select 
arbitrarily some k trials and assume that that event A indeed took place 
in each of those trials and failed in the other (n – k) trials.  Each such 
event therefore requires the occurrence of n definite results, of k 
occurrences and (n – k) failures of the event A.  

By the multiplication rule the probability of each such event is 
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pk(1 – p)n–k  
 

and the number of them is equal to k
nC , to the number of n elements 

taken k at a time. Apply the addition rule and the known formula 
 

k
nC  = 

( 1)...( 1)

!

n n n k

k

− − +
  

 
for determining the probability sought. It will be 
 

Pn(k) = 
( 1)...( 1)

!

n n n k

k

− − +
pk(1 –p)n–k.                             (5.3) 

 
It is often expedient to express knC  in a somewhat different way. 

Multiply its numerator and nominator by  
 
(n – k)(n – k – 1) … 2·1. 
 

Then 
 

!

!( )!
k
n

n
C

k n k
=

−
 

 
where by definition 0! = 1. We have now 
 

Pn(k) = 
!

(1 ) (1 )
!( )!

k k n k k n k
n

n
C p p p p

k n k
− −− = −

−
.              (5.4) 

 
Formulas (5.3) and (5.4) are usually named after Bernoulli17. For 

large values of n and k the determination of Pn(k) is difficult since the 
factorials n!, k!, and (n – k)! are very large and awkwardly calculable 
numbers. They are therefore determined with the aid of special tables 
of factorials and some approximation formulas.  

Example. The probability that the expenditure of water in a certain 
factory will be normal (will not exceed a definite volume) is 3/4. 
Required is the probability that the expenditure will remain normal 
during the next 1, 2, …, 5, 6 days. 

Denote by P6(k) the probability that during k out of the 6 days the 
expenditure will be normal and calculate it by formula (5.4) taking p = 
3/4: 

 
P6(6) = (3/4)6; P6(5) = 6(3/4)5·1/4; P6(4) = 4

6C (3/4)4·(1/4)2; 

P6(3) = 3
6C (3/4)3·(1/4)3; P6(2) = 2

6C (3/4)2·(1/4)4;  

P6(1) = 6(3/4)·(1/4)5. 
 
Finally, P6(0) = (1/4)6 is the probability that the expenditure will be 

excessive all the six days. The denominator of all seven fractions is 46 
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= 4096 which we will certainly bear in mind when finally calculating 
them. The result is 

 
P6(6) ≈ 0.18, P6(5) ≈ 0.36, P6(4) ≈ 0.30, P6(3) ≈ 0.13,  
P6(2) ≈ 0.03, P6(1) ≈ P6(0) ≈ 0. 
 
The most probable excessive expenditure takes place during one or 

two days in six whereas the probability of such expenditure during five 
or six days [P6(1) or P6(0)] is practically zero. 

5.3. The Most Probable Number of the Occurrences of an Event. 
The previous example shows that the probability of a normal 
expenditure of water during exactly k days increases with k, takes its 
maximal value and begins to decrease which is best seen on a 
diagram18. A still clearer picture is provided by a diagram showing the 
change of Pn(k) with k when n becomes large.  

It is sometimes necessary to know the most probable number of the 
occurrences of an event, to know the value of k for which Pn(k) is 
maximal (certainly with given p and n). In all cases the Bernoulli 
formulas allow us to solve simply this problem which is what we now 
describe. 

We begin by calculating Pn(k + 1)/Pn(k). By formula (5.4) 
 

Pn(k + 1) = 
!

( 1)!( 1)!

n

k n k+ − −
pk+1(1 – p)n–k–1          (5.5) 

 
and formulas (5.3) and (5.5) provide 
 

1 1P ( 1) ! !( )! (1 )
.

P ( ) !( 1)!( 1)! (1 ) 1 1

k n k
n

k n k
n

k n k n k p p n k p

k n k n k p p k p

+ − −

−

+ − − −= =
+ − − − + −

  

 
The probability Pn(k + 1) will be higher, equal or lower than Pn(k) 

depending on which of the three expressions 
 

1 1

n k p

k p

−
+ −

 > 1, = 1 and < 1                                      (5.6) 

 
takes place. If, for example, we wish to know the values of k which 
satisfy the first inequality, we arrive at 
 

np − (1 – p) > k, k < np – (1 – p). 
 
And, until the increasing k becomes equal to that difference, we will 

have Pn(k + 1) > Pn(k). Probability Pn(k) will heighten with the 
increase of k. Thus, for p = 1/2 and n = 15, np – (1 – p) = 7 and, until  
k < 7, Pn(k + 1) > Pn(k). Just the same, by issuing from the two other 
relations (5.6) we establish that 
 

Pn(k + 1) = Pn(k) if k = np – (1 – p) and  
Pn(k + 1) < Pn(k) if k > np – (1 – p). 
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As soon as an increasing k oversteps the boundary np – (1 – p), the 
probability Pn(k) will begin to decrease until reaching Pn(n). This 
conclusion first of all confirms that the behaviour of the magnitude 
Pn(k) with an increasing k as manifested in the example above is a 
general law which takes place in all cases (at first Pn(k) increases, then 
decreases if only p is not too near to 0 or 1).  

In addition, this conclusion allows us to solve immediately our 
problem, the determination of the most probable value of k (which we 
denote by k0). For this value Pn(k0 + 1) ≤ Pn(k0) and k0 ≥ np − (1 – p). 
On the other hand, Pn(k0 – 1) ≤ Pn(k0) so that, similar to the above,  

 
k0 – 1 ≤ np – (1 – p) or k0 ≤ np – (1 – p) +1 = np + p. 
 
The most probable value k0 of k thus ought to satisfy the inequalities  
 
np – (1 – p) ≤ k0 ≤ np + p.                                                 (5.7) 
 
A simple subtraction shows that the length of the interval  

[np – (1 – p), np + p] in which that k0 should be contained is unity. 
Therefore, if one end of that interval [for example, np – (1 – p)] is not 
an integer, that interval will without fail include one and only one 
integer and k0 will be determined uniquely. We ought to consider this 
case normal: since p < 1 and np – (1 – p) is only an integer in 
exceptional instances in which inequalities (5.7) provide two values of 
k0, np – (1 – p) and np + p differing from each other by a unity. These 
values will indeed be most probable. Their probabilities coincide and 
are higher than the probabilities of all other values of k. 

Here is an example of such an exceptional case. Let n = 15, p = 1/2, 
then np – (1 – p) = 7, np + p = 8. The most probable values of the 
number k of the arrival of the studied event are 7 and 8. Their 
probabilities coincide and are approximately equal 0.196. 

Example 1. Observations of many years in a certain region 
established that the probability of rain on 1 July is 4/17. Required is 
the most probable number of that event during the next 50 years. 

Here  
 
n = 50, p = 4/17, np – (1 – p) = 50·4/17 – 3/17 = 11. 

 
This is an integer, so are dealing with an exceptional case19. The most, 
and equally probable numbers of rainy days will be 11 and 12. 

Example 2. Particles of a certain type are observed in a physical 
experiment. Under the same conditions 60 particles appear in the mean 
during a definite time interval and each with probability 0.7 has 
velocities exceeding v0. Under other conditions during the same time 
interval only 50 particles were observed in the mean but the 
probability of their velocities exceeding v0 was 0.8. Under which 
conditions was the most probable number of rapid particles? 

First conditions: n = 60, p = 0.7, np – (1 – p) = 41.7, k = 42  
Second conditions, respectively: 50, 0.8, 39.8 and 40. 
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The most probable number of rapid particles is somewhat larger in 
the first case. 

Number n is often very large (in artillery firing, in mass production 
of articles etc) and np will be very large as well (if only probability p 
is not exceedingly low). The second terms, (1 – p) and p, of 
magnitudes np – (1 – p) and np + p, the end points of the interval 
within which the most probable number of the occurrences of the 
studied event is situated, are less than unity. Both those magnitudes, 
and consequently the most probable number of the occurrences of the 
studied event as well, are near to np. 

Thus, if the probability of connecting two people by telephone less 
than in 15 sec is 0.74, we may assume 1000·0.74 as the most probable 
number of such connections out of a thousand calls arriving at a 
telephone exchange. This conclusion can be formulated more precisely: 

Let ko be the most probable number of the occurrences of the 
studied event in n mutually independent trials. Then ko/n is the relative 
frequency of those occurrences. Inequalities (5.7) provide: 

 
p – (1 – p)/n ≤ ko/n ≤ p + p/n. 
 
Suppose that with an invariable probability of the occurrence of that 

event in a single trial we ever more increase the number of trials (the 
most probable number ko of those occurrences will also increase). The 
fractions (1 – p)/n and p/n in the inequalities above will become ever 
smaller and they can therefore, when n is large, be neglected and both 
p – (1 – p)/n and p + p/n (and consequently ko/n) will then equal p.  

With a large number of mutually independent trials the most 
probable relative frequency of the studied event ko/n becomes 
practically equal to its probability in a separate trial . 

If for a certain measurement the probability of making an error 
contained between α and β is 0.84, then, given a large number of 
measurements, we may expect that most probably in about 84% of 
cases the error will indeed be contained between α and β. This 
certainty does not mean that, with a large number of observations, the 
probability of having exactly 84% of such errors will be high. On the 
contrary, this maximal probability itself will then be very low. Above, 
just before Example 1, even for n = 15 the maximal probability was 
only 0.196. 

That probability is only maximal in the relative sense: the 
probability of having 84% errors of measurement contained between α 
and β is higher than that of having 83 or 86% of such errors. On the 
other hand, it is easy to understand that in case of long series of 
independent measurements the probability of one or another number of 
errors of a given magnitude cannot be really interesting. For example, 
with 200 measurements it is hardly expedient to calculate the 
probability that exactly 137 of them are measured with a given 
precision. It is practically indifferent whether that number is 137, 136 
or 138 or even 140. On the contrary, it is undoubtedly interesting for 
practical reasons to know the probability that the number of 
measurements with errors contained within given boundaries is larger 
than 100, or between 100 and 125, or less than 50 etc.  

35



How to express such probabilities? Suppose we wish to determine 
the probability that the number of measurements with a given 
precision k is contained between 100 and 120 (and including 120). 
More specifically, we wish to determine the probability of inequalities 

 
100 < k ≤ 120 
 

so that k should be equal to one of the numbers 101, 102, …, 119, 120. 
By the addition rule that probability is 

 
P(100 < k ≤ 120) = P200(101) + P200(102) + … + P200(120). 
 
Given such large numbers, direct calculation of 20 separate 

probabilities of the kind Pn(k) according to formula (5.4) will be very 
difficult and is never attempted. There exist convenient tables and 
approximation formulas whose compilation/derivation is based on 
complicated methods of mathematical analysis which we will not 
discuss. However, simple reasoning about probabilities of the kind 
P(100 < k ≤ 120) can provide information which leads to exhausting 
solutions of problems at hand. We describe this topic in the next 
chapter. 
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Chapter 6. The Bernoulli Theorem 

6.1. Its Content. A diagram in § 5.3 [not reproduced here] shows 
probabilities P15(k) as a function of k. It is seen that for intervals of the 
same length, 2 ≤ k < 5 and 7 ≤ k < 10, the sums of the corresponding 
probabilities essentially differ. In general, as we know, the 
probabilities Pn(k) increase with k, pass their maximal values and 
decrease. It is therefore clear that out of two such intervals of the same 
length the sum of the probabilities will be higher for the interval 
situated nearer to the most probable value k0.  

Here, however, much more can be stated. For n trials the number k 
has (n + 1) possible values, 0 ≤ k ≤ n. Select the interval only 
containing a small part (a hundredth, say) of all such values with 
midpoint k0. It turns out that for very large values of n that interval 
corresponds to an overwhelming probability whereas all the other 
values of k taken together have an insignificantly low probability. 
Although the length of the selected interval is trifling as compared 
with n [recall: 0 ≤ k ≤ n], the sum of the corresponding probabilities 
will be considerably higher than the probability corresponding to all 
the other values of k.  

All this practically means that 
With a series of a large number n of mutually independent trials, we 

may expect with probability near to unity that the number of the 
occurrences of event A is very near to its most probable value and only 
differs from it by a negligible part of n. 

This proposition known as the Bernoulli theorem20 and discovered 
at the end of the 17th century is one of the most important laws of 
probability theory. Until the mid-19th century all its proofs required 
complicated mathematical means, but then the great Russian 
mathematician P. L. Chebyshev justified it very simply and briefly. 
We provide now his remarkable proof. 

6.2. Its Proof. We already know that in case of a large number n of 
trials the most probable number k0 of the occurrences of event A barely 
differs from np where, as always, p is the probability of the occurrence 
of A in a separate trial. It is therefore sufficient to prove that in case of 
a large number of mutually independent trials the number k of the 
occurrences of A will with an overwhelming probability very little 
differ from np, differ not more than by an arbitrarily small part of 
number n (for example, not more than by 0.01n or 0.001n or, in 
general, not more than by εn with ε being an arbitrarily small definite 
number). In other words, we ought to prove that in case of a 
sufficiently large n the probability 

 
P(|k – np| > εn)                                                                   (6.1) 

 
will become arbitrarily low.  

For ensuring this fact note that by the addition rule the probability 
(6.1) equals the sum of probabilities Pn(k) for all those values of n 
which are contained in either direction more than εn apart from np. 
Since the sum of all probabilities of a complete system of events is 
unity, the Bernoulli theorem means that the overwhelming part almost 
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equal to unity of that sum corresponds to the interval [– εn, εn] with 
midpoint np, and only its insignificant part is left for the regions 
beyond that interval. And so, 

 
P(|k – np| > εn) = 

 –    

P ( ).
k np

n
n

k
ε>

∑                                        (6.2) 

 
We turn now to Chebyshev’s reasoning. In each term of the sum 

written just above 
 

2

1,  and therefore 1
ε ε

 –  k np k np

n n

− > > 
 

  

 
so that the sum will only increase if each Pn(k) is multiplied by the left 
side of the latter inequality. Therefore 
 

P(|k – np| > εn) < 

 – 

2
2

  
2

 –   
2

1
P ( ) ( ) P ( ).

ε εk np n
n n

k np n

k np
k k np k

n nε ε> >

−  = − 
 

∑ ∑  

 
The appeared sum will increase still more if we add new terms so 

that k will change not only from 0 to np – εn and from np + εn to n, but 
over the whole interval [0, n]. Therefore, all the more 

 

P(|k – np| > εn) < 2
2 2

0

1
( ) P ( ).

ε

n

n
k

k np k
n =

−∑                                   (6.3) 

 
This sum favourably differs from all the previous sums in that it can 

by precisely calculated. The Chebyshev method indeed consists in 
replacing the sum (6.2) which is difficult to calculate by the sum (6.3). 

Now the calculation itself. No matter how long it appears, the 
difficulties will only be technical and everyone knowing algebra will 
overcome them. At first we easily determine 

 

2 2 2 2

0 0 0 0

( ) P ( ) P ( ) 2 P ( ) P ( ).
n n n n

n n n n
k k k k

k np k k k np k k n p k
= = = =

− = − +∑ ∑ ∑ ∑  (6.4) 

 
The last of the three terms on the right side is the sum of the 

probabilities of a complete system of events and equals unity. In each 
of the other two terms the summands corresponding to k = 0 are zero, 
and we may begin the summing from k = 1.  

1. Express Pn(k) according to formula (5.4): 
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Since n! = n(n – 1)! and k! = k(k – 1)!, we get 
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Set l = k – 1 with l changing from 0 to n – 1 rather than from 1 to n 

as k did: 
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On the right side the sum of the probabilities of a complete system 

of events (of all possible occurrences of event A in (n – 1) trials) is 
obviously unity. Thus,  
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2. For calculating the first term of (6.4) we first derive 
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The summand corresponding to k = 1 is zero and we begin with k = 2. 
Note that n! = n(n – 1)(n – 2)! and k! = k(k – 1)(k – 2)!. We easily 
determine, after setting similar to the above m = k – 2: 
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The last equality appeared since the sum of the terms Pn–2(m) is the 

sum of the probabilities of some complete system of events, of all the 
possible numbers of the occurrences of event A in (n – 2) trials.  

Finally, formulas (6.5) and (6.6) lead to 
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And now we substitute the results (6.5) and (6,7) into relation (6.4), 
then insert the appearing extremely simple expression into inequality 
(6.3): 

2

0

( ) P ( )  
n

n
k

k np k
=

− =∑ n2p2 + np(1 – p) – 2np·np + n2p2 = np(1 – p),  

P(|k – np| > εn) < 
2 2 2

(1 ) (1 )
.

ε ε
np p p p

n n

− −=                                       (6.8) 

 
This new inequality provides everything we needed. Indeed, we 

may select an arbitrarily small ε but then leave it fixed. On the other 
hand, according to the meaning of our statement, the number of trials n 
can be as large as we wish so that the fraction p(1 – p)/ε2n becomes 
arbitrarily small: with an increasing n its denominator can become as 
large as desired whereas its numerator does not change. 

Let p = 0.75, then (1 – p) = 0.25, p(1 – p) = 0.1875 < 0.2. Choose  
ε = 0.01, then inequality (6.8) provides 
 

P(|k – 
3

4
n| > 

100

n
) < 

0.2 2000

0.0001
.

n n
=   

 
For n = 200,000, P(|k – 150,000|) < 0.01. This actually means that, 

for example, having a settled process ensuring that 75% of the 
manufactured articles are in the mean of sort I, from 148,000 to 
152,000 of them out of 200,000 will with probability 0.99 (that is, 
almost certainly) posses this property.  

Two remarks are necessary here. First, in practice, more precise 
estimates are applied although their justification is much more 
complicated.  

Second, our rough estimate provided by inequality (6.8) becomes 
essentially more precise when p is very low, or, on the contrary, near 
to unity. Thus, in the example just above suppose that the probability 
of an article being of sort I is  

 
    p = 0.95, then (1 – p) = 0.05, p(1 – p) < 0.05.  
 
With ε = 0.005 and n = 200,000,  
 

2

(1 ) 0.05 1000,000
0.01,

ε 25 200,000

p p

n

− ⋅< =
⋅

  

 
just as previously. But here εn = 1000 rather than 2000 and, since np = 
190,000, the number of articles having that property will be actually 
contained between 189,000 and 191,000. 

With p = 0.95 the inequality (6.8) thus practically guarantees that 
the interval for the expected number of articles having the stated 
property is twice shorter than for the case in which p = 0.75: 

 
P(|k – 190,000| > 1000) < 0.01. 
 

40



Problem. A quarter of workers in a certain branch of industry have 
secondary school education. Required is the most probable number of 
such workers in a random sample of 200,000 and an estimation of the 
probability that their actual number in the sample deviates from the 
most probable number not more than by 1.6%. 

We issue from the fact that the probability of having that education 
is 1/4 for each worker in the sample; this is indeed the meaning of a 
random sample. Then, n = 200,000, p = 1/4, k0 = np = 50,000, p(1 – p) 
= 3/16. We ought to calculate the probability that  

 
|k – np| < 0.016np = 800 
 

where k is the sought number of workers. Select ε so that εn = 800, 
then ε = 800/n = 0.004. Formula (6.8) leads to  
 

P(|k – 50,000| > 800) < 
3

0.06,
16 0.000016 200,000

≈
⋅ ⋅

  

 
P(|k – 50,000| ≤ 800) > 0.94. 
 
The most probable number of such workers is 50,000 and the 

probability sought is higher than 0.94. Actually, it is much higher. 
In concluding this chapter, we note that inequality (6.8) can be 

written as 
 

P(|k/n – p| > ε) < 
2

(1 )
.

ε
p p

n

−
 

 
The fraction k/n is the relative frequency of the occurrence of event 

A in n trials. It follows that for any arbitrarily small but fixed ε the 
probability that the relative frequency deviates from the probability of 
event A more than by ε becomes arbitrarily low as n increases. This is 
similar to the stability of the relative frequencies discussed at the 
beginning of Chapter 1.  
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Chapter 7. Random Variable and the Law of Distribution 
7.1 Notion of Random Variable. Above, we have many times 

encountered magnitudes whose values were not constant but changed 
due to random influences. Thus, the number of boys out of a hundred 
newborns will not be the same for all hundreds. The length of fibres of 
a certain sort of cotton considerably varies not only with the region of 
growth but even if taken from the same bush and boll.  

A few more examples. 1) When firing from the same gun at the 
same target and setting the same distance [and direction] the shells 
nevertheless scatter. The distance between the gun and the point in 
which the shell falls varies, takes differing numerical values depending 
on unaccountable circumstances. 

2) The velocity of a gas molecule does not remain constant, it 
changes owing to the collisions of that molecule with other molecules. 
Each molecule can collide with any other molecule and the variation 
of its velocity is purely random.  

3) The yearly number of meteorites hitting the earth21 is not constant 
but experiences considerable variations depending on many random 
circumstances. 

4) The weight of grains of wheat grown on a certain plot is not 
definite but changes from grain to grain. It is impossible to allow for 
the influence of all the factors (quality of the plot, conditions of 
sunlight, availability of water etc) determining the growth of the grains 
and their weight randomly changes.  

In spite of the heterogeneity of those examples all of them illustrate 
the same picture. In each of them we have a magnitude somehow 
characterizing the result of an operation (the counting of the meteorites, 
the measuring of the length of the fibres). However we try to uniform 
the conditions of their realization, each of those magnitudes can take 
various values depending on random differences in the eluding 
circumstances of these operations. 

In the theory of probability each such magnitude is called a random 
variable. The examples above are already sufficient for convincing us 
in that their study is so important for applying the theory to most 
various branches of knowledge and practice.  

To know a random variable certainly does not mean to know its 
numerical value22. Indeed, if, for example, a condenser had been 
working 5324 hours before perforation, the time of its uninterrupted 
work has thus taken a definite value and ceased to be a random 
variable. So what should we know about such a variable for obtaining 
all the possible information about it as about a random variable?  

First of all, obviously, we ought to know all its possible numerical 
values. Thus, suppose that, as found out by tests, the working life of 
electronic tubes ranges from 2306 (minimal value) to 12,108 hours 
(maximal value). That magnitude can therefore take any value between 
those boundaries. In our third example above, the yearly number of 
meteorites can be any non-negative integer 0, 1, 2, … 

However, the knowledge only of the list of possible values of a 
random variable is not yet sufficient for practically necessary 
estimations. Thus, if, in our second example, we consider a gas under 
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two differing temperatures, the possible numerical values of the 
velocity of its molecules will be the same and the set of these values 
will not provide any possibility of a comparative estimation of the 
temperature. At the same time, however, a difference of the 
temperatures indicates a very considerable difference in the state of the 
gas. 

If we wish to estimate the temperature of a given amount of gas and 
only know the set of the possible values of the velocity of its 
molecules, we will naturally ask how often one or another velocity is 
observed. In other words, we obviously try to find out the probabilities 
of the different possible values of the studied random variable.  

7.2. Notion of the Law of Distribution. We begin with a quite 
simple example, with firing at a target. When hitting a circle in its 
middle (region I), the shot gets 3 points; for hitting it elsewhere 
(region II), 2 points, and for missing (region III), 1 point23.  

Consider the number of these points as a random variable; its 
possible values are 1, 2, and 3. Denote their probabilities by p1, p2 and 
p3, so that p3, for example, corresponds to hitting region I. The 
possible values of the random variable under consideration are the 
same for all shots but their probabilities can essentially differ. Such 
differences obviously determine the differences between the skills of 
the shots. Thus, a very good shot possibly has probabilities p3 = 0.8, p2 
= 0.2 and p1 = 0.0; for an average and a quite poor shot, 0.3, 0.5 and 
0.2 and 0.1, 0.3, 0.6 respectively. 

If a shot fires 12 times, the possible numbers of hit-points occurring 
in each region are 0, 1, 2, …, 11, 12. By itself, this information does 
not yet allow us to judge his skill. On the contrary, we can only form 
an exhausting impression about it when finding out in addition the 
probabilities of the mentioned numbers. 

Such is the invariable situation: knowing the probabilities of the 
various possible values of a random variable we will thus know how 
often to expect the occurrence of its more or less favourable values. 
This is apparently sufficient for judging the efficiency or quality of the 
pertinent operation. Practice shows that the knowledge of the 
probabilities of all the possible values of a studied random variable is 
indeed sufficient for solving any problem concerned with estimating 
its capacity as an indicator of the quality of the appropriate operation24.  

We conclude that for completely characterizing a random variable 
as such it is necessary and sufficient to know the list of all its possible 
values and the probabilities of each of them.  

A random variable is thus expediently described by a table with two 
rows, values and probabilities. For the best shot (see example above), 
the number of points considered as a random variable can be 
represented by a table 

 
values: 1, 2, 3; probabilities: 0, 0.2, 0.8.                                   (I) 
 
In general, for a random variable with possible values xi and 

probabilities pi the table will be 
 
values: x1, x2, …, xn; probabilities: p1, p2, …, pn. 
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Such a table is called the law of distribution of the appropriate 

random variable. The knowledge of this law allows us to solve all 
problems connected with the variable at hand.  

Problem. The number of points gained by a shot after one attempt 
has (I) as its law of distribution. Another shot has a different law of 
distribution: 

 
values: 1, 2, 3; probabilities: 0.2, 0.5, 0.3.                                (II) 
 
Required is the law of distribution of the sum of points achieved 

after a double shot. Such sums are clearly random variables, and we 
are asked to compile a table for our example. We should therefore 
consider all possible results of a combined firing of our shots. In the 
following table we entered the probabilities of each result calculated 
by the multiplication rule for independent events. The numbers of 
points gained by the shots are denoted, respectively, by ξ and η. 

[The authors’ table lists the 9 possible results with the 
corresponding ξ, η, ξ + η and the probability of that sum.] 

The table shows that the sum ξ + η takes values 3, 4, 5 and 6. Value 
2 is impossible since its probability is zero25. Now, value 3 is achieved 
in two ways and by the addition rule its probability is 0 + 0.04. The 
arrival of one of the following results […] is necessary and sufficient 
for ξ + η = 4. […] 

We have thus compiled the table of the [law of] distribution for  
ξ + η which completely solves the formulated problem: 
 

values: 3, 4, 5, 6; probabilities: 0.04, 0.26, 0.46, 0.24.                (III) 
 
The sum of the probabilities is unity. Each law of distribution ought 

to possess this property since we deal here with the sum of the 
probabilities of all possible values of a random variable; that is, with 
the sum of the probabilities of some complete group of events. It is 
convenient to apply this property for checking the calculations made. 
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Chapter 8. The Mean Value 

8.1. Determination of the Mean Value of a Random Variable. 
Those two shots whom we have discussed just now, can achieve 3, 4, 5 
or 6 points depending on random circumstances; the respective 
probabilities were shown in table (III). Now, suppose we ask: how 
many points are achieved by two shots after firing once each? We are 
unable to answer inasmuch as different attempts lead to differing 
results. However, for estimating the skill of our pair, we will certainly 
look at the mean result over a volley of firing rather than at one 
attempt whose result can be random26. So how many points in the 
mean are achieved after one attempt? Such a question is quite 
reasonable and can be definitely answered.  

We reason in the following way. If the pair of shots fire a hundred 
times, the table of their law of distribution will show that about 4 times 
they achieve 3 points; about 26, 46 and 24 times they achieve 4, 5 and 
6 points respectively. The sum of the points is  

 
3·4 + 4·26 + 5·46 + 6·24 = 490. 
 
Divide this number by 100 and get 4.9 points in the mean for an 

attempt, and this is our answer.  
Instead of this method of calculation we could have divided each 

term by 100 even before summing them up. The simplest way of doing 
it is by dividing by 100 each second multiplier of each term and thus to 
return to the probabilities entered in table (III). The mean number of 
points achieved in each attempt made by the pair of shots will then be 

 
3·0.04 + 4·0.26 + 5·0.46 + 6·0.24 = 4.9.  
 
The terms here are obtained by multiplying each possible value of 

our random variable by its probability. In general, suppose that some 
random variable is defined by the table 

 
values: x1, x2, …, xk; probabilities: p1, p2, …, pk. 
 
To recall: if p1 is the probability of the value x1 of a random variable 

ξ, then, after n operations, x1 will be observed about n1 times, and  
n1/n = p1 so that n1 = np1. Just the same, x2 will appear about n2 times, 
n2 = np2, …, and xk will appear about nk = npk times. And so, a series 
of n operations will contain in the mean 
 

n1 = np1 such operations in which ξ = x1, 
n2 = np2 such operations in which ξ = x2, …, 
nk = npk such operations in which ξ = xk. 
 
The sum of the values of ξ in all n operations will be about 
 
x1n1 + x2n2 + … + xknk = n(x1p1 + x2p2 + … + xkpk) 
 

and the mean value ξ  of ξ corresponding to a single operation will be 
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ξ  = x1p1 + x2p2 + … + xkpk. 
 
We have thus arrived at the following important rule27: 
For obtaining the mean value of a random variable each of its 

possible values should be multiplied by the corresponding probability 
and the calculated products summed up. 

Of what benefit is the knowledge of the mean value of a random 
variable? To be more convincing, we begin by offering a few 
examples. 

Example 1. Return once more to the two shots. The points they 
achieve are random variables whose laws of distribution we have 
derived in § 7.2. An attentive look at those laws is sufficient for 
deciding that the first shot is more skilful. Indeed, his probability of 
the best result (3 points) is considerably higher whereas the 
probabilities of the other (of the worst) results are higher for the 
second. Such a comparison does not however satisfy us since it is 
purely qualitative. Unlike the temperature, say, which directly 
estimates the heat of a physical body, here there is yet no measure, no 
such number which would have directly estimated the skill of those 
shots. And therefore it can always happen that a direct consideration 
will not provide any answer or that the answer will be arguable. Thus, 
instead of tables (I) and (II) having tables 

 
values: 1, 2, 3; probabilities: 0.4, 0.1, 0.5                                   (Iʹ) 
values: 1, 2, 3; probabilities: 0.1, 0.6, 0.3                                   (IIʹ) 
 

we would have been hard put to decide at a glance which shot is better 
skilled. Indeed, the best result (3 points) is more probable for the first 
shot, but so is the worst result (1 point). On the contrary, 2 shots are 
more probable for the second shot.  

And so, calculate now by the rule above the mean number of points 
for both shots: 

 
1·0.4 + 2·0.1 + 3·0.5 = 2.1; 1·0.1 + 2·0.6 + 3·0.3 = 2.2. 
 

In the mean, the second shot attained a bit more than the first and it 
certainly follows that the result of numerous firing will generally be 
somewhat more favourable for the second shot. We may now state for 
sure that the second shot is better skilled. The mean value of the 
number of points provided a convenient measure for easily and 
undoubtedly comparing the skills of the shots. 

Example 2. When assembling a device, the most precise adjustment 
of its certain part can require 1, 2, 3, 4 or 5 attempts depending on luck. 
The number of attempts, ξ, is a random variable with those possible 
values. Suppose that their probabilities are given in the table: 

 
values: 1, 2, 3, 4, 5; probabilities: 0.07, 0.16, 0.55, 0.21, 0.01. 
 
If asked to supply as many parts as necessary for 20 devices28, we 

will be unable to apply this table for estimating that number since it 
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only informs us that it varies from one case to another. However, if we 
determine the mean number ξ  of attempts necessary for a device and 
multiply it by 20, we will obviously arrive at such an approximate 
number. We have 

 
ξ = 1·0.07+ 2·0.16 + 3·0.55 + 4·0.21 + 5·0.01 = 2.93,  

20ξ  = 58.6 ≈ 59. 
 

It is reasonable to have an additional small reserve and prepare 60 – 65 
parts. 

In these examples, we needed some approximate estimate for a 
random variable. A glance at a table [of its law of distribution] will not 
provide such an estimate; it only informs us that the variable can take 
some values with some probabilities. However, the mean value of the 
random variable calculated by that table is already capable of 
furnishing such an estimate. It is indeed the value that the random 
variable will take in the mean in a more or less long series of 
operations. The mean value especially well characterizes a random 
variable when the operations are numerous or repeated many times 
over. 

Problem 1. A series of trials is made with a constant probability p of 
the occurrence of some event A [in each trial]  and the results of 
separate trials are independent from one another. Required is the mean 
frequency of the occurrence of A in n trials. 

That frequency is a random variable with possible values 0, 1, 2, …, 
n, and the probability of some value k is, as we know (§ 6.2), 
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The mean value sought is therefore 
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k k np
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as calculated in that section. We have also convinced ourselves in that 
for any large n the most probable number of these occurrences is close 
to np.  

In this case the most probable value of a random variable is near its 
mean value, but we ought to beware of believing that such closeness 
takes place for any random variable: these values can be very far apart. 
Thus, a random variable with the law of distribution 

 
values: 0, 5, 10; probabilities: 0.7, 0.1, 0.2 
 

has 0 as its most probable value whereas its mean value is 2.5. 
Problem 2. Independent trials are made with probability 0.8 of the 

occurrence of some event A in each of them. Not more than 4 trials are 
carried out but, a second restriction, they only continue until the first 
appearance of A. Required is the mean number of those trials. 
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The number of trials can be 1, 2, 3 or 4 and we ought to determine 
their probabilities. In case of only one trial the event A should occur at 
once and the probability of this event is p1 = 0.8. For the case of 2 
trials it is necessary that the event only occurs at the second one after 
failing at the first one. By the multiplication rule for independent 
events 

 
p2 = (1 – 0.8)·0.8 = 0.16. 
 
For the case of 3 trials similarly 
 
p3 = (1 – 0.8)2·0.8 = 0.032 
 

and for the last case, the event A should fail in the first three and either 
occur or fail in the fourth: 
 

p4 = (1 – 0.8)3 = 0.008. 
 
The number of trials considered as a random variable is determined 

by its law of distribution 
 
values: 1, 2, 3, 4; probabilities: 0.8, 0.16, 0.032, 0.008. 
 

The mean value of that number is 
 

1·0.8 + 2·0.16 + 3·0.032 + 4·0.008 = 1.248. 
 

Suppose that 100 such experiments should be carried out. We may 
then expect to carry out 1.248·100 ≈ 125 trials. 

Such problems often occur in practice. For example, we test the 
strength of yarn. It is of top quality if it does not tear even once under 
a specified load during tests of not more than four specimens of 
standard length taken from the same skein or boll. 

Problem 3. A side of a square plot as shown on an air survey photo 
is measured with possible errors29 0, ± 10, ± 20, ± 30 m having 
probabilities 0.42, 0.16, 0.08, 0.05. Required is the mean area of the 
plot as determined by these measurements. 

The length of the side is a random variable with law of distribution 
 
values: 320, 330, 340, 350, 360, 370, 280 m;  
probabilities: 0.05, 0.08, 0.16, 0.42, 0.16, 0.08, 0.05.                   (I) 
 
We can at once derive the mean value of that length, but in this case 

it is not even necessary: the same errors in each direction are equally 
probable and this symmetry leads to mean value 350 m. In more detail: 
the mean value includes terms 

 
350·0.42;  
(340 + 360)·0.16 = [(350 – 10) + (350 + 10)]·0.16 = 2·350·0.16; 
(330 + 370)·0.08 = 2·350 0.08; (320 + 380)·0.05 = 2·350·0.05 
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and it therefore equals 
 

350(0.42 + 2·0.16 + 2·0.08 + 2·0.05) = 350. 
 
We may surmise that the mean value of the area of the plot is 3502 = 

122,500 m2. This result would have been correct had the mean value of 
the square of a random variable been equal to the square of its mean 
value. However, this premise is false. In our example, the possible 
values of the area of the square are 

 
3202, 3302, 3402, 3502, 3602, 3702, 3802. 
 
Which is the true value? It depends on which of the seven cases 

represented in table (I) will take place. The probabilities of the seven 
possible values are therefore the same as shown in table (I). It follows 
that the law of distribution of the area is 

 
values: as stated just above;  
probabilities: 0.05, 0.08, 0.16, 0.42, 0.16, 0.08, 0.05 
 
The mean value of the area is 
 
3202·0.05 + 3302·0.08 + 3402·0.16 + 3502·0.42 +  
3602·0.16 + 3702·0.08 + 3802·0.05. 
 
Here also, symmetry, as it often occurs, simplifies calculation and it 

is worthwhile to show how exactly this simplification is achieved. We 
have 

 
3502·0.42 + (3402 + 3602)·0.16 +  
(3302 + 3702)·0.08 + (3202 + 3802)·0.05. 
 
Now,  
 
3402 + 3602 = (350 – 10)2 + (350 + 10)2,  
3302 + 3702 = (350 –20)2 + (350 + 20)2, 
3202 + 3802 = (350 – 30)2 + (350 + 30)2, 
 

so that the sum above is  
 

3502·[0.42 + 2·0.16 + 2·0.08 + 2·0.05] + 
2·102·0.16 + 2·202·0.08 + 2·302·0.05 = 
3502 + 2(16 + 8 + 45) = 122,686 (m2). 
 
All this can be calculated mentally [?]. The mean value of the area 

of the square is somewhat (in this case, imperceptibly) larger than the 
square of the mean value of its side, 3502 = 122,500 (m2). It is not 
difficult to show that such is the general rule: the mean value of a 
square of any random variable is always30 larger than the square of its 
mean value. 
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Indeed, suppose we have a random variable ξ with a perfectly 
arbitrary law of distribution 

 
values: x1, x2, …, xk; probabilities: p1, p2, …, pk.  
 

The law of distribution of its square will be 
 

values: 2 2 2
1 2, ,..., ;kx x x  probabilities: the same as above. 

 
Then  
 

1 1 2 2ξ ... ,k kx p x p x p= + + +  2 2 2 2
1 1 2 2 ,ξ ... k kx p x p x p= + + +  

2 2 2 2 2ξ (ξ) ξ 2(ξ) (ξ) .− = − +   
 
Since the sum of the probabilities is unity, the three terms in the 

right side of the last equality are 
 

2 2

1

ξ ,
k

i i
i

x p
=

=∑  2

1 1

2(ξ) 2(ξ)(ξ) 2ξ 2ξ ,
k k

i i i i
i i

x p x p
= =

= = =∑ ∑  

2 2

1

(ξ) (ξ)
k

i
i

p
=

= =∑ 2

1

(ξ) .
k

i
i

p
=
∑   

 
Therefore 
 

2 2ξ (ξ)− = 2 2 2

1 1

[ 2ξ (ξ) ] ( ξ) .
k k

i i i i i
i i

x x p x p
= =

− + = −∑ ∑  

 
All the terms of the last sum are non-negative, therefore  
 

2 2ξ (ξ) 0,− ≥  QED. 
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Chapter 9. Mean Values of Sums and Products 

9.1. A Theorem on the Mean Value of Sums. Very often it is 
necessary to calculate the mean value of a sum of two (and not rarely 
of a larger number of) random variables with known mean values. 
Suppose for example that two factories manufacture the same articles 
and that their daily produce is, in the mean, 120 and 180 of them 
respectively. Can we now establish the mean value of their combined 
daily produce? Or is the data insufficient and we ought to know in 
addition something else (for example, the pertinent laws of 
distribution)? 

It is very important that the knowledge of the mean values of the 
summands is always sufficient for calculating the mean value of their 
sum. And that the latter is expressed through the former in the easiest 
possible way: the mean value of a sum always equals the sum of the 
mean values of the summands. Thus, if ξ and η are perfectly arbitrary 
random variables, 

 

ξ η ξ η.+ = +   
 

In the example above, ξ 120,  η 180,= =  ξ η ξ η+ = +  = 300. 
To prove this rule in the general case, suppose that the laws of 

distribution of those random variables are 
 
values: x1, x2, …, xk; probabilities: p1, p2, …, pk;                     (I) 
values: y1, y2, …, yl; probabilities: q1, q2, …, ql.                      (II) 
 
The possible values of ξ + η are all the sums of the kind of xi + yj,  

1 ≤ i ≤ k, 1 ≤ j ≤ l. The probability of that sum, pij, is unknown. It is the 
probability of a joint event ξ = xi and η = yj. Had these two events been 
independent, then, obviously, by the multiplication rule, we would 
have had  
 

pij = piqj,                                                                                  (9.1) 
 

but we will not at all assume that condition.  
And so, equality (9.1) will not generally take place and we ought to 

take into account that the knowledge of the laws of distribution (I) and 
(II) does not in general allow us to conclude anything about the 
probability pij. According to the general rule, the mean value of the 
sum ξ + η equals the sum of the products of all its possible values by 
their probabilities: 

 

1 1 1 1 1 1

ξ η ( ) [ ] [ ].
k l k l l k

i j ij i ij j ij
i j i j j i

x y p x p y p
= = = = = =

+ = + = +∑∑ ∑ ∑ ∑ ∑            (9.2) 

 
Consider attentively the fist sum of pij. It is the sum of the 

probabilities of all possible events ξ = xi and η = yj with i being the 
same in all the terms of that sum and j ranging over all of its possible 
values from 1 to l inclusive. Since the events η = yj with differing j are 
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obviously incompatible, that sum is by the addition rule the probability 
of one out of the l events, ξ = xi and η = yj where j = 1 or 2 or … or l.  

However, to say that one such event had occurred is the same as 
saying that ξ = xi. Indeed, if one such event did occur, then, clearly, the 
event ξ = xi had also appeared. Inversely, if event ξ = xi had occurred, 
than, since η ought to take one of its values y1, y2, …, yl, one of the 
events ξ = xi and η = yj (j = 1 or 2 or … or l) also happened31.  

The sum of pij with a constant i, being the probability of the 
occurrence of one of the events just mentioned, is simply equal to the 
probability of ξ = xi; that is, to that very sum, to pi. Just the same, we 
certainly convince ourselves in that the other sum of pij (with constant 
j) equals qj. Setting these two expressions into the equality (9.2), we 
find that 

 

1 1

ξ η ξ η,
k l

i i i j
i j

x p y q
= =

+ = + = +∑ ∑  QED. 

 
We have proved this theorem for two summands, but it is 

immediately extended to three or more summands since 
 

ξ+η+ς ξ η ς= + +  ξ η ς= + +  etc. 
 
Example. In a certain factory a manufactured article is selected from 

each of the n lathes. Determine the mean number of substandard 
articles if the probabilities of their production are respectively p1, 
p2, …, pn. The number of rejects per one article is a random variable 
with only two possible values, 1 and 0 whose probabilities are p1 and 
(1 – p1), p2 and (1 – p2) etc. The mean number of substandard articles 
selected from the first lathe is 

 
1p1 + 0(1 – p1) = p1. 
 

The same magnitudes for the other lathes are p2, …, pn and the mean 
value of the total number of substandard articles is p1 + p2 + … + pn. 
In particular, if these probabilities coincide, that mean number will be 
pn. 

We have already determined this result (6.5), but it is interesting to 
compare the awkward previous calculations with this simplest 
reasoning which did not require any calculations. Moreover, in 
addition to simplicity, we have gained generality. Previously, we 
assumed that the results of the separate trials were mutually 
independent and our conclusion was only valid under this condition. 
Now, however, we manage without it since the addition rule for mean 
values takes place for any random variables without any restrictions. 
And if p is constant, be there any dependence between the lathes and 
the articles, the mean number of the rejects will always remain without 
change, np. 

9.2. A Theorem on the Mean Value of Products. The problem 
considered in § 9.1 often has to be also studied for the products of 
random variables. Suppose that ξ and η have, as previously, laws of 
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distribution (I) and (II). The product ξη is a random variable with 
possible values xiyj, 1 ≤ i ≤ k and 1 ≤ j ≤ l, and probabilities pij. The 
problem consists now in formulating a rule allowing us to express the 

mean value ξη  of ξη through the mean values of ξ and η. A general 
solution of this problem is however impossible since the mean value 
sought is not uniquely determined by the mean values ξ and η :  

various values of ξη  are possible for the same values of ξ and η  and a 
general formula expressing the former through the latter is impossible.  

Nevertheless, there exists an important exception and, moreover, the 
derived connection is then extremely simple. We will call the random 
variables ξ and η independent if for any i and j the events ξ = xi and  
η = yj are independent, if some definite value taken by one of the 
random variables does not influence the law of distribution of the other 
variable.  

And so, if ξ and η are independent in the defined sense, then, by the 
multiplication rule for independent events,  

 
pij = piqj, i = 1, 2, …, k; j = 1, 2, …, l. 
 
Therefore 
 

ξη  = 
1 1 1 1

k l k l

i j ij i j i j
i j i j

x y p x y p q
= = = =

= =∑∑ ∑∑
1 1

ξη.
k l

i i j j
i j

x p y q
= =

=∑ ∑  

 
The mean value of the product ξη of independent random variables 

ξ and η equals the product of the mean values of its factors, of ξ and η. 
Just like it was in the previous case of addition, this rule derived for 

the product of two random variables immediately extends to the 
product of any number of factors. It is only necessary for those factors 
to be mutually independent so that the knowledge of definite values of 
some of those variables does not influence the laws of distribution of 
the other variables.  

In case of dependent variables ξ and η the mean value of their 
product ξη can be unequal to the product of the mean values of ξ and η. 
Suppose for example that the law of distribution of ξ is 

 
values: – 1, 1; probabilities: 0.5, 0.5 
 

and that the distribution of another random variable η = ξ is the same; 
the mean values of both these variables are zero, but ξη = ξ2 always 

equals 1, therefore ξη  = 1. If, however, η = – ξ, its distribution 
remains as it was previously, but the product ξη always equals – 1 and 

ξη  = – 1. 
Example. An electric current whose strength I depends on random 

circumstances flows along a conductor whose resistance R also 
depends on randomness. The mean value of the resistance is 25 ohms 
and the mean value of the current’s strength is 6 amp. Required is the 
mean value of the drop of the voltage E. 
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According to the Ohm law, E equals the product RI. We have R  = 
25, I  = 6. Assuming that these magnitudes are independent, we find 
that 

 
E RI= =  25·6 = 150 volts.  
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Chapter 10. Scatter and Mean Deviations 

10.1. The Mean Value Is Insufficient for Characterizing a 
Random Variable. Time and time again we have seen that the mean 
value of a random variable provides a rough guide for imagining it 
which is sufficient in many practical instances. Thus, for comparing 
the skill of two competing shots suffice it to know the mean values of 
their gained points. For comparing the efficiency of two differing 
systems of counting cosmic particles it is quite sufficient to know the 
number of those possibly skipped by each system etc. In each such 
case we considerably benefit by describing a random variable by a 
single number, by its mean value, rather than defining it by a 
complicated law of distribution. It appears then as though we are 
dealing with a positively known magnitude with a completely definite 
value.  

Much oftener, however, we encounter a situation in which the mean 
value of a random variable does not determine its most practically 
important features. A more detailed acquaintance with its law of 
distribution is then required.  

A typical case in point is the study of the distribution of the errors of 
measurement. Let ξ be the magnitude of an error, of a deviation of the 
obtained value of the measured magnitude from its mean value. If 
systematic errors are absent, the mean value of the error, ξ , is zero. 
How then are the errors scattered? How often will errors of some 
magnitude occur? Only knowing that ξ  = 0, we have no answer to any 
of these questions. Often it is only known that both positive and 
negative errors are possible and that their probabilities approximately 
coincide. We do not know, however, the most important feature: are 
most results of measurement located near the true value of the 
measured magnitudes32, so that we may reckon that each result is 
highly reliable, or are they mostly scattered over large intervals in each 
direction from that value. Both possibilities are encountered in practice. 

Two observers measuring a certain magnitude with the same mean 
error ξ  can produce results of differing degrees of precision. It can 
occur that the measurements of one of them systematically scatter 
more extensively which means that the absolute values of the errors of 
his measurements can be larger in the mean and that his results will 
deviate farther from the measured magnitude than the results of the 
other observer.  

Another example. Two sorts of wheat are tested for crop capacity. 
Depending on random circumstances (quantity of rainfall, distribution 
of fertilizers, solar radiation etc) the yield per square meter is subject 
to considerable fluctuations and is a random variable. Suppose that 
under the same conditions the mean yield is the same in both cases, 
240 g/m2. Can we judge the quality of the sorts only by this mean yield?  
Apparently not since most practically useful is that sort whose yield is 
less exposed to random influences of meteorological and other factors, 
whose yield scatters less. And so, the possible fluctuation of the yield 
is not less important than its mean value.  

56



10.2. Various Methods of Measuring the Scatter of a Random 
Variable. The examples above as well as [possible] similar 
illustrations convincingly indicate that in many cases the knowledge of 
the mean values of random variables is just insufficient for describing 
their most interesting features. Those features remain unknown, and 
we ought therefore to have their entire tables of distribution before our 
eyes which is almost always complicated and inconvenient. We can 
also try to describe the random variables by one or two similar 
additional numbers so that the joined small set of [two or three] 
numbers will provide a practically sufficient characteristic of their 
most essential features. Let us see how we can realize the latter 
possibility. 

The described examples show that in many cases it is practically 
most important to know the possible deviations33 of the actual values 
of a given random variable from its mean value, to know the degree of 
its scattering. Are those values for the most part closely grouped 
around the mean value (and therefore tightly grouped themselves) or, 
on the contrary, do most of them very markedly deviate from that 
value (with some of them necessarily considerably differing from each 
other)?  

The rough pattern below helps to imagine clearly the difference just 
described. Consider two random variables with laws of distribution 
respectively 

 
values: – 0.01, 0.01; probabilities: 0.5, 0.5                                     (I) 
values: – 100, 100; probabilities: 0.5, 0.5                                       (II) 
 
Both have zero mean values; however, the first always takes values 

very near to zero (and to each other) whereas the second can only take 
values sharply differing from zero (and from each other). For the 
former, the knowledge of its mean value also provides rough 
information about its actual possible values. However, the mean value 
of the latter is very considerably apart from such possible values and 
furnishes no idea about them. Those possible values are much more 
scattered than in the first case. 

Our problem thus consists of finding a number which would give us 
a reasonable measure of scattering of a random variable and at least 
roughly indicate to us how large the expected deviations are from its 
mean value. The deviation of random variable ξ from its mean value 
ξ,  ξ – ξ,  is itself a random variable as well as |ξ – ξ | which 
characterizes that deviation regardless of its sign. And we wish to have 
a number which will roughly characterize that random deviation ξ – ξ  
and tell us how large, approximately, can it be. This question can be 
solved in many ways; most common are the following three. 

10.2.1. The mean deviation. It is most natural to adopt the mean 
value of |ξ – ξ | as a rough value of that very random variable. This 
mean value is called the mean deviation of ξ. If ξ has the law of 
distribution 

 
values: x1, x2, …, xk; probabilities: p1, p2, …, pk 
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the law for |ξ – ξ | will be 
 
    values: |x1 – ξ |, |x2 – ξ |, …, |xk – ξ |; probabilities: p1, p2, …, pk. 

 

Here, ξ  = x1p1 + x2p2 + … + xkpk. We thus obtain the mean 
deviation Mξ of ξ  

 

Mξ = 
1

| ξ |
k

i i
i

x p
=

−∑   

 
with ξ  as written just above. 

For variables with laws of distribution (I) and (II) we have ξ  = 0 
and Mξ = 0.01 and 100 respectively. However, these examples are 
trivial since the pertinent absolute deviations can only take one value 
and thus in both cases the essence of a random variable is forfeited. 

Calculate now the mean deviation for the random variables with 
laws of distribution (I´) and (II´) in § 8.1. We saw there that the mean 
values of those variables were 2.1 and 2.2, very near to each other. The 
mean deviations for those variables are 

 
0.4|1 – 2.1| + 0.1|2 – 2.1| + 0.5|3 – 2.1| = 0.9 
0.1|1 – 2.2| + 0.6|2 – 2.2| + 0.3|3 – 2.2| = 0.48 
 
For the second variable the mean deviation is almost twice less. 

Actually this obviously means that, although in the mean the shots 
gained approximately the same number of points, and in this sense can 
be thought equally skilled, the hit-points of the second shot are 
uniform to a much greater extent, are much less scattered. The first 
shot, while achieving the same number of points, fires irregularly, and 
his results are often both much better and much worse than his mean 
results. 

10.2.2. The mean square deviation. It is indeed natural but also very 
inconvenient to measure the rough magnitude of a deviation by its 
mean value since calculations and estimations are often complicated 
and sometimes simply impossible. Usually another measure of 
deviations is introduced. Just as the deviation ξ – ξ  of the random 

variable ξ from its mean value ξ , the square (ξ – ξ )2 of this deviation 
is a random variable. In our previous notation, its law of distribution is  

 
values: (x1 – ξ )2, (x2 – ξ )2, …, (xk – ξ )2; probabilities: p1, p2, …, pk  
 

and the mean value of this square is 
 

2

1

( ξ) .
k

i i
i

x p
=

−∑  
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It provides an idea of the approximate value of the square of the 
deviation ξ – ξ . Extracting a square root of this sum 

 

Qξ 
2

1

( ξ)
k

i i
i

x p
=

= −∑   

 
we obtain a measure which is capable of characterizing the 
approximate magnitude of the deviation itself, the mean square 
deviation of random variable ξ. Its square, 2

ξQ  [also displayed above], 

is the variance of that variable34. This new measure of the deviation is 
certainly somewhat more artificial than the mean deviation introduced 
above. Here, we follow a roundabout path: first, we deduce an 
approximate value of the square, and only after that, by extracting the 
square root, return to the deviation itself. On the other hand, as shown 
in the next section, the application of the mean square deviation Qξ 

considerably simplifies calculations. It is this circumstance that 
compels statisticians to apply mainly this measure. 

Example. For the random variables defined by their laws of 
distribution (I´) and (II´) of § 8.1 we have respectively  

 
2
ξQ  = 0.4(1 – 2.1)2 + 0.1(2 – 2.1)2 + 0.5(3 – 2.1)2 = 0.89 
2
ξQ  = 0.1(1 – 2.2)2 + 0.6(2 – 2.2)2 + 0.3(3 – 2.2)2 = 0.36 

 
The square roots of these magnitudes, i. e., the mean square 

deviations, are ca. 0.94 and 0.6. For the same random variables we 
have derived the mean deviations 0.9 and 0.48. Both measures are 
considerably larger for the first random variable and in each case we 
conclude that that variable is more scattered than the second.  

Again, in each case the mean square deviation is larger than the 
mean deviation and it is easy to understand that the same should 
happen for any random variable. Indeed, the variance 2

ξQ  being the 

mean value of the square of |ξ – ξ | cannot be less than the square of 

the mean value Mξ of |ξ – ξ |, see end of § 8.1, and Qξ ≥ Mξ follows 

from 2
ξQ  ≥ 2

ξM . 

10.2.3. Probable deviation. Another method of characterizing 
scattering is often applied, especially in military operations. We 
describe it in terms of an example. 

Suppose that an artillery gun fires in a certain direction with shots 
ranging over distance ξ. Now, this is a random variable whose mean 
value indicates the centre of hit-points with shells falling around it35. 
The deviation ξ – ξ  of the studied random variable (of the range) from 
its mean value is at the same time the deviation of a hit-point from the 
centre of such points. Any estimate of |ξ – ξ | therefore measures the 
scatter of shells as well and is the most important indication of the 
quality of firing.  

From the centre of hit-points mark a very small segment α in both 
directions along the line of firing. Only a small fraction of shells will 
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fall within the interval [– α, α]. In other words, for small values of α 
the probability of |ξ – ξ | < α is very low. Lengthen now that interval 
by increasing the arbitrary α and the probability of a shell falling 
within it will heighten. If α is very large, practically all the shells will 
fall within the thus lengthened interval. Therefore, the probability of 
the inequality |ξ – ξ | < α heightens from 0 to 1. At first, the 

probability of |ξ – ξ | > α, of the shell falling beyond the interval, will 
be higher, then, with a larger value of α, it will become lower. So there 
ought to exist some value α0 of α for which the probabilities of a shell 
falling either within, or beyond the corresponding interval will 
coincide. Both inequalities  

 
|ξ – ξ | < α0 and |ξ – ξ | > α0  
 

are then equally probable and their common probability is therefore 
1/2. Here, we neglect the insignificantly low probability of the exact 
equality |ξ – ξ | = α0. 

This α0 is unique. Its magnitude depends on the quality of the 
artillery guns. It is easily seen that the value of α0, just as the mean or 
the mean square deviation, can serve as a measure of the scattering of 
the shells. Indeed, if α0 is very small, a half of the shells fall within a 
very small interval which testifies to a comparatively insignificant 
scatter. On the contrary, a large α0 shows that a half of the shells still 
falls beyond the corresponding [long] interval. This obviously 
indicates that the scatter of the shells is considerable.  

That number, α0, is usually called the probable deviation of ξ. The 
absolute deviation |ξ – ξ | can with the same probability be either 
larger or smaller than it. That deviation denoted by Eξ is not more 
convenient for calculations than the mean deviation Mξ and much less 
convenient than the mean square deviation Qξ but nevertheless it is 
indeed adopted in artillery for estimating all deviations. Below, we 
show why this practice usually does not lead to any difficulties.  

10.3. Theorems on the Mean Square Deviation. Let us show that 
those deviations indeed possess special properties compelling us to 
prefer them to any other pertinent characteristics. The following 
problem has basic importance for applications. 

Suppose that independent random variables ξ1, ξ2, …, ξn have mean 
square deviations q1, q2, …, qn. Denote  

 
ξ1 + ξ2 + … + ξn = Sn 
 

and ask ourselves how to determine the mean square deviation Q of Sn.  
In accordance with the addition rule for mean values  
 

1 2ξ ξ ... ξn nS = + + +   
 
so that  
 

1 1 2 2(ξ ξ ) (ξ ξ ) ... (ξ ξ ),n n n nS S− = − + − + + −  
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2( )n nS S− =   

2

1

[ (ξ ξ )]
n

i i
i=

− =∑  2

1

(ξ ξ )
n

i i
i=

− +∑
1 1

(ξ ξ )(ξ ξ ),
n n

i i k k
i k= =

− −∑∑  i ≠k.  (10.1) 

 
Note that m. v. 2( )n nS S− =  Q2, m. v. 2(ξ ξ )i i−  = 2,iq  i = 1, 2, …, n 

where m. v. is our [O. S.] notation for mean value of.  
By the addition rule for mean values we have (i ≠k) 
 

Q2 = 2

1 1 1

m.v.[(ξ ξ )(ξ ξ )].
n n n

i i i k k
i i k

q
= = =

+ − −∑ ∑∑                               (10.2) 

 
However, we assumed that ξi and ξk, again for i ≠k, are independent 

and by the multiplication rule for independent magnitudes we have 
 
m.v. [(ξ ξ )(ξ ξi i k k− − )] = m.v.(ξ ξ )i i− m.v.(ξ ξ )k k− . 

 
Both factors on the right side disappear since, for example, the first 

equals ξ ξi i−  and (10.2) becomes  

Q2 = 2

1

.
n

i
i

q
=
∑   

 
The variance of the sum of independent random variables equals the sum 

of their variances. One more very important rule for variances of 
independent random variables is thus added to the addition rule for mean 
values. 

For the mean square deviations we immediately obtain  
 
Q = square root of the right side of the previous formula.              (10.3) 
 
This possibility of simply expressing the mean square deviation of a sum 

through the mean square deviations of its terms provided these are 
independent is indeed one of the most important advantages of the mean 
square deviation over mean, probable and other kinds of deviations.  

Example 1. Suppose that in a certain factory each manufactured article can 
be substandard with probability p independently from the other articles. The 
mean number of rejects out of n manufactured articles is np (Problem 1 in § 
8.1). For roughly estimating how largely the actual number of substandard 
articles can deviate from this mean value we will find the mean square 
deviation of the number of those rejected from np. The easiest way to 
calculate it is by applying formula (10.3). 

Indeed, we can consider the number of substandard articles as the sum of 
the numbers of such articles appearing out of each manufactured. We have 
acted in this way when discussing a similar example in § 9.1. And since we 
assume that these numbers are independent random variables, we may apply 
the addition rule for variances and calculate the mean square deviation Q of 
the total number of rejects by formula (10.3). The magnitudes q1, q2, …, qn 
will then denote the mean square deviations of the number of substandard 
articles per each article.  

The number of rejects ξi appearing when manufacturing article i is 
determined by table 
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value: 1, 0; probabilities p, 1 – p, 
 

so we have ξi  = p and 

 
2 2m.v. (ξ ξ )i i iq = − =  (1 – p)2p + p2(1 – p) = p(1 – p), 

 

Q = 2

1

n

i
i

q
=

=∑  (1 ).np p−   

 
The problem is solved. 
Comparing the mean number of substandard articles np with this 

magnitude we see that for large values of n the latter is much smaller than the 
former and only constitutes its small fraction. Thus, if n = 60,000, p = 0.04,  

 

np = 2400, Q = 60,000 0.04 0.96 48.⋅ ⋅ =   
 
The actual number of rejects will deviate from its mean value by 

approximately 5% [2%] .  
Example 2. A mechanism consists of n articles joined successively along 

an axis. The lengths of each can somewhat deviate from standard and they 
are therefore random variables supposed independent. The mean lengths of 
the articles and their mean square deviations are 

 
lengths: a1, a2, …, an; deviations: q1, q2, …, qn. 
 
These magnitudes for the entire chain of the articles are 
 
a = a1 + a2  + … + an, q = Q from (10.3) 
 

so that, if n = 9, a1 = a2 = … = a9 = 10 cm, q1 = q2 = … = q9 = 0.2 cm, we will 

have a = 90 cm and q = 29 0.2⋅ =  0.6 cm. 
The length of each article deviated from its mean value by ca. 2%, but the 

length of the chain only deviated from its mean value by ca. 2/3%. This 
decrease of the relative error which occurs in the sum of random variables 
plays an essential role when precise mechanisms are assembled. Without 
such mutual compensation the assembling would have often been 
unsuccessful: the total length of the articles would have been either shorter or 
longer than necessary. Shortening the tolerated error in the lengths of the 
articles is inexpedient since a comparatively small increase in the precision 
of these lengths leads to an essential increase in the cost of the articles36. 

Example 3. A magnitude is measured n times under invariable conditions. 
The results of the measurements will generally differ due to random errors 
depending on the state of the instrument and observer and variations in the 
state of the surrounding air.  

Denote the results of measurements by ξ1, ξ2, …, ξn assumed as usually 

independent and their common mean value by ξ.  It is natural to suppose that 
the mean square deviations also coincide (and equal q). The arithmetic mean 
of the results of measurement η is a random variable. By the addition rule 

 

1 2 1 2

1 1
η m.v. (ξ ξ ... ξ ) (ξ ξ ... ξ ) ξ.n nn n

= + + + = + + + =   
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In essence, it was obvious from the beginning that this mean value 

coincides with that for each measurement. Now, by the addition rule for 
variances (10.3) the mean square deviation of the sum of the ξi is 

 

Q = 2nq q n=   

 
and the mean square deviation of η (which is equal to Q/n) is q/√n. 

We have arrived at a very important conclusion: The arithmetic 
mean of independent and identically distributed random variables has  

1) mean value: equal to that of each summand. 
2) mean square deviation: √n times smaller than that of each 

summand 
Suppose that the mean value of the measured distance is 200 m and 

the mean square deviation of the measurements is 5 m. The arithmetic 
mean η of 100 measurements37 will naturally have as its mean value 

the same distance 200 m but its mean square deviation will be 100 = 
10 times smaller than that of a separate measurement, 0.5 m. We thus 
have grounds for expecting that the arithmetic mean of 100 
measurements will be considerably nearer to the mean value 200 m 
than the result of some measurement.  

The scattering of the arithmetic mean of a large number of 
independent magnitudes is many times less than it is for each of those 
magnitudes. 
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Chapter 11. The Law of Large Numbers 

11.1. The [Bienaymé –] Chebyshev Inequality. We have 
repeatedly stated that the knowledge of some mean deviation of a 
random variable (for example, its mean square deviation) allows us to 
form an approximate idea about the expected largest deviations of that 
variable from its mean value. This remark does not yet contain any 
quantitative estimates, does not ensure even an approximate 
calculation of the probabilities of large deviations.  

The following simple consideration due to Chebyshev makes all this 
possible. We issue from the variance of a random variable ξ (§ 10.2.2) 

 

2 2
ξ

1

( ξ) .
k

i i
i

Q x p
=

= −∑   

 
Let α be any positive number. Neglecting all terms of that sum in 

which |xi – ξ | ≤ α we can only decrease it:  
 

2
ξQ ≥  α2 2

| ξ|  α

( ξ) .
i

i i
x

x p
− >

−∑  

 

The sum will decrease still more if we replace (xi – ξ )2 in each of 
its terms by a smaller magnitude α2: 

 
2
ξQ >

| ξ|  α

.
i

i
x

p
− >
∑  

 
In the right side we have now the sum of the probabilities of those 

values xi of ξ which deviate from ξ  by more than α in either direction. 
According to the addition rule it is the probability that ξ will take one 
of those values. In other words, it is the probability P(|ξ – ξ | > α) that 
the actual deviation will be larger than α. We thus have  

 

P(|ξ – ξ | > α) < 
2
ξ
2

.
α

Q
                                                                        (11.1) 

 
This is the [Bienaymé –] Chebyshev] inequality. It estimates the 

probability of deviations larger than any arbitrary α if only the mean 
square deviation Qξ is known. True, the estimate is often very rough38 
but sometimes it can be nevertheless applied, whereas its theoretical 
importance is extremely essential. 

At the end of § 10.3 we considered the following example. The 
mean value of measurements is 200 m; the mean square deviation of a 
measurement is 5 m. The probability of a deviation larger than 3 m was 
very noticeable, perhaps higher than 1/2, but its exact value can 
certainly only be calculated when the law of distribution of the results 
of measurements is completely known. 
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We saw, however, that the mean square deviation of the arithmetic 
mean, η, of 100 measurements was only 0.5 m. The inequality (11.1) 
will provide  

 

P(|η − 200| > 3) < 
2

2

0.5 1

3 36
=  ≈ 0.03. 

 
And so, this probability is very low; actually, it is still much lower 

and can be practically ignored.  
In Example 1 of § 10.3 we estimated the number of substandard 

articles (2400 with mean square deviation 48) out of 60,000. The 
[Bienaymé –] Chebyshev inequality provides the probability of the 
number of rejects m contained, say, in the interval [2300, 2500] or  
|m – 2400| ≤ 100: 

 
P(|m – 2400| ≤ 100) = 1 – P(|m – 2400| > 100) > 1 – 482/1002 ≈ 0.77. 
 

The actual probability is much higher. 
11.2. The Law of Large Numbers. Suppose we have n independent 

variables ξ1, ξ2, …, ξn with the same mean value a = 100 m and the 
same mean square deviation q = 5 m. The mean value of their 
arithmetic mean η is a, and its mean square deviation is q/√n (§ 10.3, 
Example 3). For any positive α the [Bienaymé –] Chebyshev 
inequality then leads to 

 
P(|η –a| > α) < q2/α2n.                                                           (11.2) 
 
Then 
 
P(|η – 200| > α) < 25/α2n. 
 

We may choose a very small α, for example, α = 0.5 m. Then  
 
P(|η – 200| > 0.5) < 100/n. 
 
For a very large n the right side is arbitrarily small; for n = 10,000 it 

equals 0.01 and 
 
P(|η – 200| > 0.5) < 0.01. 
 
If the probability of such unlikely events is neglected, we may state 

that the arithmetic mean of 10,000 measurements will almost certainly 
deviate from 200 m not more than by 50 cm in either direction. When 
desiring to shorten that deviation to 10 cm, we will have to choose α = 
0.1 m. Then 
 

P(|η – 200| > 0.1) < 
25 2500

0.01n n
=   

 
and n should now be 250,000 rather than 10,000. 
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Generally, however small is α, the right side of inequality (11.2) can 
be made arbitrary small, it is only necessary to have a sufficiently 
large n. And so, we may then arbitrarily decrease the right side of the 
inequality (10.2) and consider the inequality of contrary sense |η – a| ≤ 
α to be satisfied as near to certainty as desired. 

If random variables ξ1, ξ2, …, ξn are independent and have the same 
mean value a and the same mean square deviation, their arithmetic 
mean will be arbitrarily near to a with probability arbitrarily near to 
unity (practically certainly so near). 

This is the simplest case of the so-called law of large numbers, of 
one of the most important fundamental theorems of probability theory. 
It was the great Russian mathematician Chebyshev who discovered 
this case in the mid-19th century as a generalization of the Bernoulli 
theorem (§ 6.1)39. 

An isolated random variable can (as we know) often take values far 
apart from its mean value (can often considerably scatter) but the 
arithmetic mean of a large number of random variables behaves quite 
differently. Its scatter is not significant and with a dominant 
probability it only takes values very near to its mean value. This 
certainly occurs since the random deviations from that mean in either 
direction cancel each other and in most cases the summary deviation is 
small. And this is indeed the profound essence of that law of large 
numbers. 

The just proved Chebyshev theorem is often utilized for judging the 
quality of a homogeneous material by its comparatively small sample. 
Thus, the quality of cotton in a boll is judged by a few of its wisps 
taken randomly from different parts of the boll. Similarly judged are 
large quantities of wheat40. Such judgements are highly precise. Indeed, 
the sample of wheat is small as compared with the whole amount of it, 
but it contains a large number of grains and, according to the law of 
large numbers, allows us to judge sufficiently precisely the mean 
weight of a grain and therefore the quality of the whole amount of 
wheat. And a boll of cotton weighing about 330 kg is judged by a few 
hundred fibres only weighing about a tenth of a gram.  

11.3. The Proof of the Law of Large Numbers. Until now, we 
only considered the case in which all the variables ξ1, ξ2, …, had the 
same mean value and the same mean square deviation. However, the 
law of large numbers is applicable under more general assumptions.  

We will now study the case in which their mean values can be 
arbitrary (and denote them by a1, a2, …), in general differing from 
each other. Then the mean value of the arithmetic mean η of ξi will be 

 
A = (1/n)( a1 + a2 + … + an) 
 

and by the inequality (11.1) for any positive α  
 

P(|η – A| > α) < 2 2
η /α .Q                                                         (11.3) 

 
All is thus reduced to estimating 2ηQ which is almost as simple as in 

the previous particular case. This magnitude is the variance of η equal 
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to the sum of n mutually independent variables (this is still our 
assumption) divided by n. By the addition rule for variances we have 

 
2 2 2 2
η 1 22

1
( ... )nQ q q q

n
= + + +   

 
where q1, q2, … are the mean square deviations of ξ1, ξ2, … 

Now we suppose that in general these deviations also differ from 
each other provided however that, taking as many of them as we wish 
(so that n can be arbitrarily large), all of them are still smaller than 
some positive number b. Actually, this requirement is invariably met 
since we have to add magnitudes of similar, in a sense, magnitudes and 
the extents of their scatter do not differ too much.  

And so, let qi < b, i = 1, 2, … Then the equality above leads to 
 

Qη < 
2

2
2

1
.

b
nb

n n
=   

 
By the inequality (11.3) we have 
 

    P(|η – A| > α) < 
2

2
.

α
b

n
  

 
However small is α, a sufficiently large number of the random variables 
will ensure that the right side of this inequality can be made as small as 
desired which obviously proves the law of large numbers in the 
present general setting. 

If, therefore, a sufficiently large number n of random variables ξ1, 
ξ2, … are independent and their mean square deviations remain 
smaller than some positive number, the absolute expected deviations of 
the arithmetic mean of the variables from the arithmetic mean of their 
mean values can be as small as desired.  

This is indeed the law of large numbers in Chebyshev’s general 
formulation. It is important to note an important circumstance. When 
repeating measurements of some magnitude a under invariable 
conditions the observer gets not quite the same numerous results ξ1, 
ξ2, …, ξn and assumes that the approximate value of a is their 
arithmetic mean. Can we expect to obtain an arbitrarily precise value 
of a after carrying out a sufficiently large number of observations?  

Yes. We can if only there are no systematic errors41, if  
 
ξk =  a, k = 1, 2, …, n  

 
and if the obtained values ξk are not indefinite; that is, if we correctly 
read the results on our instrument. If, however, the possible precision 
of reading is only δ, then, obviously, we cannot expect to obtain results 
more precise than ± δ and the arithmetic mean of the results will be 
certainly corrupted by the same uncertainty42.  
    This remark means that, if the instrument provides the results of 
observation to within some indefinite δ, the attempts to obtain the 
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value of a more precisely by applying the law of large numbers will be 
deceptive and the pertinent calculations become an arithmetical 
childish occupation. 
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Chapter 12. The Normal Laws 

12.1. Formulation of the Problem. We have seen that some 
random variables essentially influence a considerable number of 
natural phenomena and technological processes and operations. It 
often occurs that until the end of a phenomenon, process or operation 
we can only [?] know the laws of distribution of these variables, i. e., 
the lists of their values and corresponding probabilities.  

If a variable can take infinitely many different values (the range of a 
fired shell, the error of measurement) it is preferable to indicate the 
probability of some intervals of those values rather than the values 
themselves. For example, it is advantageous to say that that error is 
contained within interval [– 1, 1] or [0.1, 0.25] millimetres.  

Had we wished to find out the laws of distribution of the 
encountered random variables43 without taking into account general 
considerations or guesstimates, had we without any preliminary 
assumptions attempted to discover all the features of those laws by 
approaching each random variable purely experimentally, our problem 
would have been too laborious and hardly feasible. Establishing at 
least the most important features of a new, unknown law of 
distribution would have required a large number of trials. Long since 
scientists have therefore attempted to discover such general types of 
laws which could have been easily foreseen, expected, suspected to 
describe at least a wide class of practically encountered random 
variables. Long ago such types have been theoretically established and 
their existence experimentally confirmed. 

It is obvious how advantageous is the possibility of foreseeing, by 
issuing from theoretical considerations and the entire previous 
experience, the type of the laws of distribution which necessarily 
describe an encountered random variable. If such guessing is 
confirmed, a very few trials or observations are usually sufficient for 
determining all the necessary features of the sought law of distribution. 

Theoretical studies have shown that in a large number of cases we 
may with sufficient grounds expect laws of distribution of a certain 
type. These laws are called normal. Owing to the complexity involved, 
we briefly describe them here omitting all the proofs and exact 
formulations.  

Among practically occurring random variables very many are 
random errors or at least are easily treated as such. Take for example 
the distance ξ travelled by a fired shell. We naturally assume that there 
exists some typical mean distance ξ0 set as the required range. The 
difference ξ – ξ0 is the error of the distance, and the study of the 
random variable ξ is completely and immediately reduced to studying 
that random error.  

Such errors, however, change their magnitude from one shot to 
another. As a rule, they depend on many causes acting independently 
from each other: random fluctuations of the gun tube [?], an 
unavoidable (although small) scattering of the weight and form of the 
shell, random changes in atmospheric conditions, random errors of 
aiming, – all these and still many other causes are capable of leading to 
error in the distance44. All the particular errors are mutually 
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independent random variables, such that the effect of each only 
constitutes a very small fraction of their joint action.  

The final error ξ – ξ0 which we desire to study will simply be the 
summary effect of all the separate mutually independent random errors. 
A similar situation clearly exists for most practically encountered 
random errors. Theoretical considerations show that the law of 
distribution of a random variable which is the sum of a very large 
number of mutually independent random variables of whichever 
essence, if only [the action of] each of them is small as compared with 
[that of]  the whole sum ought to be near to the law of a completely 
determined type, the type of normal laws45. 

We are thus able to assume that a very considerable part of 
practically encountered random variables (in particular, all those 
caused by a large number of mutually independent errors) are 
distributed approximately according to normal laws. We ought 
therefore to acquaint ourselves with their main features.  

12.2. Notion of Curves of Distribution. Laws of distribution can be 
advantageously shown on diagrams. They allow us to see at a glance, 
without studying any tables, the most important features of those laws. 
The possible values of a given random variable ξ are marked by points 
on a horizontal line beginning from some point of origin, positive 
values to the right and negative, to the left. The probabilities of each 
such value are marked upwards along perpendiculars erected at the 
points corresponding to those values. The scales in both directions are 
chosen in a manner that ensures a convenient and easily visible picture.  

By the addition rule, the probability that ξ takes a value contained 
within some interval (α, β) equals the sum of the probabilities of all 
such possible values. If, as it often happens, the number of these 
values is very large, the top points of the corresponding perpendiculars 
seem merged into a single continuous curve, the curve of distribution 
of the studied random variable. The probability of the inequalities α < 
ξ < β is represented by the sum of the lengths of the perpendiculars 
located within the interval (α, β).  

Suppose that the distance between two adjacent possible values of 
the random variable is always unity if, for example, those values are 
expressed by successive integers. This we can always actually attain 
by selecting an appropriate scale for our diagram. The length of each 
perpendicular will then be numerically equal to the area of a rectangle 
whose height is that very length and the base is the unit distance 
between adjacent possible values of the random variable.  

It is easy to understand that the probability of the inequalities  
α ≤ ξ < β can be represented by the sum of such rectangles situated 
above segment [α, β]. Practically, however, if those possible values are 
very densely disposed, that sum will not differ from the area of a 
curvilinear figure bordered by the segment [α, β] from below, by that 
figure from above and, from the sides, by the perpendiculars erected 
from α and β. The probability of the studied random variable to fall in 
any interval is simply and conveniently given by the area above that 
interval and below the curve of distribution.  

As a rule, when a random variable takes very many possible values 
the probabilities of separate values are negligible (practically zero) and 
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uninteresting. Thus, when measuring the distance between two 
settlements, it is utterly uninteresting to know that its error is exactly 
473 cm. On the contrary, of essential interest is the probability of a 
deviation contained between 3 and 5 m46. The same is true in all 
similar cases: when a random variable takes very many values, it is 
important to know the probability of intervals of those values rather 
than of separate values. 

12.3. Properties of the Curves of Normal Distributions. A 
normally distributed variable always takes infinitely many possible 
values. In spite of all the differences between normal curves they have 
common pronounced features: 

1) All those curves have a single peak and incessantly drop on its 
both sides. When removing an interval of possible values of a random 
variable in either direction from the perpendicular of that peak the 
probability that that variable takes a value within the interval will 
continuously lower. 

2) All those curves are symmetric with regard to the perpendicular 
passing through that peak. The areas situated above segments of equal 
areas and equally removed from that perpendicular are therefore 
obviously equal.  

3) All those curves are bell-shaped. In the vicinity of the peak they 
are convex upward, then, at some distance from the peak they inflect 
and become convex downward. That distance (and the height of the 
peak as well) differ for different curves47. 

So how do the various normal curves differ from each other? When 
answering this question, we ought to recall first of all that the complete 
area between any curve of distribution [not only normal]  and the 
chosen horizontal line is unity since it equals the probability that the 
given random variable takes any of its values, – equals the probability 
of a certain event.  

The difference between curves of distribution only consists in the 
difference in which that summary area, the same for all of them, is 
distributed along that horizontal line. For normal curves the main 
question is, how much of that summary area is concentrated above 
intervals adjacent to the perpendicular of the peak and how much 
above more remote intervals. If almost all this summary area is 
concentrated in the vicinity of the peak, the random variable will with 
overwhelming probability (and therefore in an overwhelming number 
of cases) take values near it. Such variables are little scattered and 
their variances are small. Owing to the symmetry of the normal curve 
the most probable value of the random variable always coincides with 
its mean value.  

If, on the contrary, only a small part of all this summary area is 
concentrated in the vicinity of the peak, the random variable will likely 
take values notably deviating from its most probable value. Such 
variables are much scattered and their variances are large. 

For acquainting ourselves most rapidly with all the totality of the 
normal laws and learning how to apply them it is expedient to issue 
from their main properties. 

Main Property 1. If ξ is distributed according to a normal law, then 
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for any constant c > 0 and d the variable cξ +d is also distributed 
according to some normal law; and, conversely, for any normal law 
there exists such a (unique) pair of numbers c > 0 and d that cξ +d is 
distributed according to that very law. 

And so, if random variable ξ has a normal distribution, all the laws 
of distribution of cξ +d for any c > 0 and d are also normal.  

Main property 2. If two random variables are independent and 
distributed according to normal laws, their sum is also distributed 
according to some normal law. 

We can now rigorously justify some [other]  properties especially 
important for applications.  

1) For any two numbers a and q > 0 there exists a unique normal 
law with mean value a and mean square deviation q.  

Indeed, let ξ be a normally distributed random variable with mean 
value ξ  and mean square deviation Qξ. By Main Property 1 this 
statement will be proved if we show that there exists such a unique 
pair of numbers c > 0 and d that cξ +d has mean value a and mean 
square deviation q. Suppose that ξ takes a finite number of values. 
Then we may reason in the following way. Let the law of distribution 
of ξ be 

 
values: x1, x2, …, xn; probabilities: p1, p2, …, pn.  
 
The variable cξ +d (where c > 0 and d are yet any constants) will 

have the following law of distribution: 
 
values: cx1 +d, cx2 +d, …, cxn +d; probabilities: p1, p2, …, pn.  
 
Obviously48,  
 

2 2
ξξ,  ( ξ) .k k k k

k k

x p x p Q= − =∑ ∑   

 
We ought to prove that 
 

k
∑ (cxk + d)pk = a, 

k
∑ (cxk + d − a)2pk = q2. 

 
The first equality leads to 
 
c ,  ξk k k

k k

x p d p a c d a+ = + =∑ ∑                                            (12.1) 

 
and the second provides 
 
    2 2 2 2 2 2

ξ( ξ ) ( ξ) .k k k k
k k

cx d c d p c x p c Q q+ − − = − = =∑ ∑   

 
Therefore, since c > 0, 
 
c = q/Qξ                                                                                                                               (12.2) 
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and, by (12.1) 

 

d = a – c
ξ

ξ
ξ .

q
a

Q
= −                                                              (12.3)  

 
Formulas (12.2) and (12.3) also persist for random variables taking 
infinitely many values. 

And so, given a and q, numbers c and d can always be uniquely 
determined by those formulas and cξ + d obeys the normal law with 
mean value a and mean square deviation q, QED. 

If we consider every possible laws of distribution rather than normal 
laws, the knowledge of the mean value and variance (or mean square 
deviation) of a random variable will yet offer very little information 
about its law of distribution. There exists a lot of laws of distribution 
(and for that matter essentially differing from each other) having the 
same mean values and the same variances. In general, the knowledge 
of those magnitudes only briefly characterizes a law of distribution.  

The situation is different if we restrict our attention to normal laws. 
On the one hand, as we saw just above, any assumption about the 
mean value and variance of a given random variable is compatible 
with its obeying a normal law. On the other hand, and this is the main 
point, if we have grounds for assuming beforehand that a variable 
obeys some normal law, that law is uniquely determined by the 
knowledge of these mentioned parameters, and its essence as a random 
variable is completely established. In particular, we can calculate the 
probability that its value belongs to some arbitrarily chosen interval.  

2) The ratio of the probable to the mean square deviation is the 
same for all normal laws. 

Suppose that we are given two arbitrary normal laws with ξ obeying 
the first of them. By Main Property 1 there exist such constants  
c > 0 and d that cξ + d obeys the second of these laws. Denote the 
mean square deviation and the probable deviation by Qξ and Eξ 
respectively for the first variable and by q and ε for the second. By 
definition of the probable deviation 
 

P(|(cξ + d) – m. v. (cξ + d)| < ε) = 1/2 or P(c|ξ – ξ | < ε) = 1/2 or  

P(|ξ – ξ | < ε/c) = 1/2. 
 
And again by that definition ε/c is the probable deviation of ξ:  

ε/c = Eξ and ε/Eξ = c. Therefore (12.2) leads to  
 

ε/Eξ = q/Qξ and ε/q = Eξ/Qξ. 
 
The chosen normal laws were arbitrary which means that the 

formulated proposition is proved. The ratio ε/q is an absolute constant 
[not depending on the choice of the normal law]; denote it by λ. It is 

known that λ = 2/π 0.674≈  which means that for any normal law  

ε = q 2/π.  
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Because of this extremely simple connection between ε and q for 
normally distributed variables the choice of one or another for 
characterizing scatter is actually indifferent. It was stated above (even 
without restricting our study to normal laws) that unlike other 
characteristics the mean square deviation has many simple properties 
which in most cases compels both theoreticians and practitioners to 
choose those very deviations as a measure of scatter. 

We have also remarked that artillery men nevertheless almost 
always apply probable deviations but we see now why this tradition is 
harmless. Random variables, with which the theory and practice of 
artillery firing are dealing, are almost always normally distributed. For 
such variables, because of the proportionality involved, the choice of 
any of those two characteristics is practically indifferent.  

3) Suppose that ξ and η are independent normally distributed 
random variables and ς = ξ + η. Then 

 

Eς = 2 2
ξ ηE E+   

 
where Eς, Eξ and Eη are the probable deviations of the corresponding 
variables.  

We (§ 10.3) know that a similar formula takes place for mean 
square deviations whichever are the laws of distribution of ξ and η. For 
normally distributed ξ and η the variable ς is also normally distributed 
(Main Property 2) and by property 2), 

 
Eξ = λQξ, Eη = λQη, Eς = λQς,  
 

Eς = λ 2 2 2 2 2 2
ξ η ξ η ξ η(λ ) (λ ) .Q Q Q Q E E+ = + = +   

 
For normal laws, one of the most important properties of mean 

square deviations thus directly extends to probable deviations. 
12.4. Problems and Examples. We will call a normal distribution 

standard normal if its mean value is 0 and its variance, 1. For the sake 
of brevity a random variable ξ obeying this law is written as 

 
P(|ξ| < a) = Ф(a), a > 0. 
 
Ф(a) is thus the probability that the absolute value of ξ is less than a. 

Very precise tables of Ф(a), irreplaceable for those who calculate 
probabilities, have been compiled and are appended to each book 
devoted to probability, – to this book as well [not reproduced here]. 
All calculations with any normal variable can be easily and very 
precisely carried out by means of such tables. We show now how this 
is done. 

Problem 1. Random variable ξ is normally distributed with mean 
value ξ and mean square deviation Qξ. Required is the probability that 

the absolute deviation |ξ – ξ | is less than a [a > 0].  
Let ς be a random variable distributed according to the standard 

normal distribution. By Main Property 1 there exist such numbers  
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c > 0 and d that cς + d has mean value ξ  and mean square deviation 
Qξ. In other words, that it has the same law of distribution as ξ. 
Therefore 
 

P(|ξ – ξ | < a) =P(|(cς + d) – (c ς  + d)| < a) = P(c|ς – ς | < a). 
 
However, by formula (12.2) c = Qξ/Qς = Qξ since Qς = 1 because of 

the standard normal distribution of ς. Therefore 
 

P(|ξ – ξ | < a) =P(Qξ|ς – ς | < a) = P(|ς| < 
ξ ξ

) ( ).
a a

Q Q
= Φ      (12.4) 

 
The problem is solved since Ф(a/Qξ) can be directly found in a table. 

For variables obeying any normal distribution our table thus allows us 
to calculate easily by formula (12.4) the probability of any boundary of 
the deviations of a variable obeying any normal law from its mean 
value.  

Example 1. A certain article is manufactured on a lathe. Its length ξ 
is a normally distributed random variable with mean value 20 cm and 
variance 0.2 cm. Required is the probability that that length will be 
contained within 19.7 and 20.3 cm, – that its deviation in either 
direction will be less than 0.3 cm.  

By formula (12.4) and our table 
  

P(|ξ – 20| < 0.3) = Ф(0.3/0.2) = Ф(1.5) = 0.866. 
 
The lengths of about 87% of the articles will be contained between 

19.7 and 20.3 cm. The length of the other articles will deviate more 
than by 0.3 cm from the mean value. 

Example 2. Keeping to the conditions of Example 1, find the 
precision of the length of an article that can be guaranteed with 
probability 95%. 

We obviously have to find such a positive number a for which  
 
P(|ξ – 20| < a) > 0.95. 
 

We saw just above that the value a = 0.3 is too small since the left side 
of the new inequality will then be less than 0.87. According to formula 
(12.4)  
 

P(|ξ – 20| < a) = Ф(a/0.2) = Ф(5a). 
 
Therefore, we ought to determine first of all [?] such a value of 5a 

for which Ф(5a) > 0.95. Our table provides 5a > 1.97 and a > 0.394 ≈ 
0.4 (cm).  

Example 3. In practice, it is sometimes assumed that a normally 
distributed random variable ξ does not deviate [from its empirical (!) 
mean] more than by three mean square deviations. What grounds do 
we have for that assumption? 

Formula (12.4) and our table show that 
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P(| ξ ξξ ξ |  3 ) (3) 0.997,  (|ξ ξ |  3 ) 0.003.Q P Q− < = Φ > − > <  

 
This actually means that larger deviations will in the mean occur 

rarer than 3 times in a thousand. May we neglect this possibility or 
should it be necessarily taken into account? The answer certainly 
depends on the essence of the problem at hand and cannot be provided 
once and for all. Note also that the relation 

 
P(|ξ – ξ | < 3Qξ) = Ф(3)  
 

is a particular case of the formula 
 

P(|ξ – ξ | < aQξ) = Ф(a)                                                       (12.5) 
 

which follows from (12.4) and takes place for any normally distributed 
random variable ξ. 

Example 4. The mean weight of a certain article is 8.4 kg. It is found 
that absolute deviations larger than 50 g occur in the mean 3 times out 
of a hundred. Assume that the weight is normally distributed and 
determine its probable deviation. 

Given, 
 
P(|ξ – 8.4| > 0.05) = 0.03 
 

where ξ is the weight of a randomly chosen article. Therefore 
 

0.97 = P(|ξ – 8.4| > 0.05) = Ф(0.05/Qξ). 
 
The table shows that Ф(a) = 0.97 at a ≈ 2.12. Therefore 
 
0.05/Qξ ≈ 2.12, Qξ ≈ 0.05/2.12. 
 
The probable deviation is, see § 12.3,  
 
Eξ = 0.674Qξ ≈ 0.0155 kg = 15.5 g. 
 
Example 5. Deviations of a shell fired from an artillery gun result 

from three mutually independent causes: errors of determining the 
location of the target; of aiming; from causes changing from one shot 
to another (the weight of the shell, atmospheric conditions etc)49. 
Assuming that all these errors are normally distributed with mean 
values 24, 8 and 12 m respectively, determine the probability that the 
summary deviation from the target will not exceed 40 m. 

By property 3) the probable deviation of the summary error ξ is 
 

2 2 224 8 12 28+ + =  (m) 
 

so that the mean square deviation of that error is 28/0.647 [0.674] ≈ 
41.5, 
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    P(|ξ| < 40) = Ф(40/41.5) ≈ Ф(0.964) = 0.665.  
 
Deviations not larger than 40 m thus occur in approximately 2/3 of 
cases. 

Problem 2. Random variable ξ is normally distributed with mean 
value ξ  and mean square deviation Qξ. Required is the probability that 

the absolute deviation |ξ – ξ | is contained within interval [a, b]. 
By the addition rule 
 
P(|ξ – ξ | < b) = P(|ξ – ξ | < a) + P(a < |ξ – ξ | < b), 

P(a < |ξ – ξ | < b) = P(|ξ – ξ | < b) – P(|ξ – ξ | < a) =  
Ф(b/Qξ) – Ф(a/Qξ).                                                                  (12.6) 
 
The problem is thus solved.  
In an overwhelming majority of practical requirements the table of 

Ф(a) which we have used all the time is however an excessively 
awkward tool. Usually it is only needed to calculate the probability of 
the deviation ξ – ξ contained within more or less long intervals. It is 
therefore desirable to have, along with our complete table, an 
abbreviated table. Such tables are easy to compile from a complete 
table by means of formula (12.6). Here is an example; the abbreviated 
table is much less precise than the table appended here, but it still is 
quite sufficient for many cases. 

Separate the entire range of magnitude |ξ – ξ | into five parts 
 

from 0 to 0.32Qξ; from 0.32Qξ to 0.69Qξ; from 0.69Qξ to 1.15Qξ; 
from 1.15Qξ to 2.58Qξ; and beyond that. 

 
By formula (12.4) we have 
 
P(|ξ – ξ | < 0.32Qξ) = Ф(0.32) ≈ 0.25. 
 
Similar calculations provide the other probabilities. They are 

approximately equal to 0.25; 0.25; 0.24; and 0.01. The entire infinite 
axis can be separated into 10 intervals, five of them positive [in the 
positive semi-axis] and five negative. We will then immediately 
imagine the main features of the distribution of the deviations of the 
random variable with both arbitrary parameters. 

Finally, we consider the calculation of probabilities of a normally 
distributed random variable to be contained within an arbitrary interval.  

Problem 3. Random variable ξ is normally distributed with mean 
value ξ  and mean square deviation Qξ. It is required to calculate by 
means of a table the probability of inequalities a < ξ < b, a < b. Both 
these numbers are arbitrary.  

We have to study three cases depending on the arrangement of a and 
b with respect to ξ. Note that for any normally distributed random 
variable and any number c the probability of the equality ξ = c is zero. 
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First case: ξ  ≤ a ≤ b. By the addition rule 
 
P(ξ  < ξ < b) = P(ξ  < ξ < a) + P(a < ξ < b), 
 
P(a < ξ < b) = P(ξ  < ξ < b) – P(ξ  < ξ < a) =  

P(0 < ξ – ξ  < b – ξ ) – P(0 < ξ – ξ  < a – ξ ). 
 
However, because of the symmetry of the normal laws, for any  

α > 0  
 

P(0 < ξ – ξ  < α) = P(– α < ξ – ξ  < 0) = 1/2P(– α < ξ – ξ  < α) = 

1/2P(|ξ – ξ | < α) = 1/2Ф(α/Qξ).                                                (12.7) 
 

Therefore P(a < ξ < b) = 
ξ ξ

1 ξ ξ
[ ( ) ( )].

2

b a

Q Q

− −Φ − Φ   

 
Second case: a ≤ ξ  ≤ b. By the addition rule 
 
P(a < ξ < b) = P(a < ξ < ξ ) + P(ξ  < ξ < b) = 

P(a – ξ  < ξ – ξ  < 0) + P(0 < ξ – ξ  < b – ξ ) =  

ξ ξ

1 ξ ξ
[ ( ) ( )],

2

a b

Q Q

− −Φ + Φ  

 
see formula (12.7).  

Third case: a ≤ b ≤ ξ . By the addition rule 
 
P(a < ξ < ξ ) = P(a < ξ < b) + P(b < ξ < ξ ), 
 
P(a < ξ < b) = P(a < ξ < ξ ) – P(b < ξ < ξ ) = 

P(a – ξ  < ξ – ξ  < 0) – P(b – ξ  < ξ – ξ  < 0) = 

 
ξ ξ

1 ξ ξ
[ ( ) ( )].

2

a b

Q Q

− −Φ − Φ  

 
The problem is completely solved. We see that for a random 

variable distributed according to any normal law our table allows us to 
calculate the probability of this variable to be contained within any 
interval and thus to characterize exhaustively its law of distribution. 
The following example shows how to achieve this. 

Example 6. Shells are fired from point O along straight line OX. The 
mean distance travelled by the shells H is 1200 m. Suppose that that 
distance is normally distributed with mean square deviation 40 m. 
Determine the per cent of overshots contained within 60 – 80 m. 

We are determining the probability of 1260 < H < 1280. Applying 
the final formula of Example 3 we find 
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P(1260 < H < 1280) = 
1 1280 1200 1 1260 1200

[ ( ) [ ( )]
2 40 2 40

− −Φ − Φ =   

1
[ (2) (1.5)].

2
Φ − Φ   

 
The table provides Ф(2) ≈ 0.955, Ф(1.5) ≈ 0.866, 
 
P(1260 < H < 1280) ≈ 0.044. 
 
A little more than 4% [a little less than 4.5%] of the shells will 

overshoot the target by 60 – 80 m. 
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Chapter 13. Introduction to the Theory of Stochastic Processes 
13.1. General Idea of Stochastic Processes. When studying natural 

phenomena and processes occurring in technology, economics and 
transportation we often have to describe them by random variables 
changing in time. A few examples. 

Diffusion is known to consist in molecules of a substance 
penetrating into another substance and intermingling with its 
molecules. Let us trace the motion of a molecule. Suppose that at 
initial moment t0 = 0 it was in position (x0, y0, z0) and the components 
of its velocity were (v0x, v0y, v0z). It collides with other molecules at 
random moments and changes its position as well as velocity and 
direction of motion. It is impossible to foresee exactly this change 
since we do not know either the moments of the collisions or their 
number during any interval of time or the velocities [or directions] of 
those other molecules.  

The position of a molecule at moment t is determined by three 
components x(t), y(t), and z(t) which are thus random functions of time. 
The components of velocity vx(t), vy(t), and vz(t) are random variables 
changing in time as well50.  

Consider now a complicated device consisting of a large numbers of 
elements (capacitors, resistances, diodes, mechanical parts etc). Owing 
to some causes each element can loose its working properties and quit 
functioning. We will call such a state a failure. Observations of 
various technical devices over long periods of time are showing that 
the period of work from beginning to failure cannot be precisely 
indicated beforehand since it is a random variable.  

Suppose now that as soon as some element fails it is replaced by a 
new element and that the work of the studied device continues. How 
many elements should be replaced during time interval [0, t]? Denote 
this number by n(t) which depends on t and is random. This is a new 
example of a random variable changing in time. Its special feature is 
that it cannot decrease and randomly changes by integers (by the 
number of the elements which have to be changed). Such random 
functions are considerably interesting in the theory of reliability [cf. § 
13.5], an important engineering science which widely applies the 
methods of probability theory.  

Modern industry needs electricity. How much energy will be 
consumed by a factory or shop during a given interval of time? How 
large can the consumed power be at each given moment? How to 
calculate the parameters of electrical cables which should not be too 
low of capacity and should not burn out during a period of normal 
work either? And the sections of these cables should not be too large, 
otherwise an excessive expenditure of metal becomes necessary and 
considerable capital is withdrawn from circulation.  

Answers to these questions naturally require a thorough study of the 
consumption of electricity by separate lathes, mechanisms, various 
devices and contrivances as well as by all feeders. Such investigations 
had been carried out at many enterprises of different branches of 
industry. We provide a picture typical for the metal-working branch, 
but the final conclusions will be the same for other types of enterprises 
as well. 
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The periods of the work of a turning lathe alternate with periods of 
its idleness and, accordingly, the consumed power essentially differs. 
From almost zero during the dead time it sharply rises but does not 
remain constant. It rather undergoes considerable changes since the 
local heterogeneity of the treated material changes the speed of the 
work and the exerted effort.  

In addition, the periods of work and idleness change very irregularly. 
On closer and more thorough examination their change proves to be 
random and once more we have to deal with a random function of time. 
The sharp fluctuations of the power consumed by a lathe are smoothed 
when considering a group of 10 or 20 of them.  

The summary consumption of power remains random, but becomes 
smoother. This is essentially explained by the regularities with which 
we became acquainted when studying the law of large numbers. The 
levelling is connected with the scatter of the peaks of consumption: for 
a certain lathe the peak often occurs during periods of less or even 
minimal consumption by the other lathes. 

At present, the study of the electrical load of industrial plants and 
towns is being ever more based on the indicated features. And the 
ideas, methods and mathematical machinery of probability and the 
theory of stationary processes (of the theory of random functions of an 
independent variable) are indeed widely applied for solving them. 

13.2. Notion of Stochastic Processes and Their Various Types. 
We have come now to the definition of a stochastic process. Imagine 
that some random variable ξ(t) depends on a continuously changing 
parameter t usually called time. Actually, it can mean something else 
as well but in an overwhelming number of cases it is indeed time. 

For defining a stochastic process we ought to describe the possible 
values which it takes at each moment, their expected changes, the 
probabilities of those possible changes in time and the degree of 
dependence of the development of the process on its previous history. 
Without finding out all that we cannot at all state that we know a 
stochastic process. According to the general method of mathematically 
describing a stochastic process the functions 

 
F(t1, t2, …, tn, x1, x2, …, xn) = P[ξ(t1) < x1, ξ(t2) < x2, …, ξ(tn) < xn]  
 

are considered given for any integer positive number n and any 
moments t1, t2, …, tn.  

This method of describing a stochastic method is universal; in 
principle, it allows us to ascertain all the features of the behaviour of 
the process in time. However, it is very unwieldy so that for obtaining 
more profound results we have to isolate particular types of stochastic 
processes and look for pertinent analytical tools more adapted to 
calculations and to constructions of mathematical models of the 
studied phenomena. 

At present, several classes of stochastic processes are isolated in 
connection with various real processes and their study is sufficiently 
advanced. The pertinent information is, however, beyond the reach of 
elementary mathematical knowledge. Markov processes called after 
the outstanding Russian mathematician Markov of the end of the 19th 
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and the beginning of the 20th century gained special importance. He 
began considering, and was the first to study systematically the 
properties of the so-called chain dependences which became the 
prototype for constructing the notions and theory of the Markov 
stochastic processes.  

Suppose that process ξ(t) has the following property. For any 
moments t0 and t, t0 < t, the probability of [its]  passing from state x0 at 
moment t0 to state x (or to one of the states belonging to some set A) at 
moment t only depends on t0, x0, t and x (or A). Additional knowledge 
of the states of the process during previous periods does not change 
that probability. All the development of such processes as though 
concentrates in the state x0 achieved at moment t0 and only influences 
its further history [is only influenced] through that x0. Such processes 
are indeed called after Markov. 

At a glance, it may seem that such a serious schematization of 
phenomena has little in common with real requirements since the after-
effect of the previous development usually continues for a rather long 
time. However, mathematics and its applications in biology, 
technology, physics and other branches of knowledge had accumulated 
experience that shows that many phenomena such as diffusion or the 
management of the automatic control of manufacturing perfectly 
conform to the pattern of Markov processes.  

Moreover, it occurred that by changing the notion of state any 
stochastic process can be converted into a Markov process. This is a 
very serious argument favouring a wide development of their theory. 
Markov processes are therefore extensively applied in studies of many 
practical problems since they allow the application of a well developed 
and comparatively simple analytical means of calculation.  

Consider in addition that any application of mathematical means for 
studying some natural phenomena or technological, economic or 
mental processes requires their preliminary schematization, an 
isolation of some peculiarities which sufficiently describe their course. 
True, it is now usual to discuss simulation rather than schematization. 
The model of phenomena which we created possesses many 
peculiarities. First, it is simpler than the studied phenomenon itself. 
Second, its initial propositions and connections are clearly formulated, 
a feature lacking in real processes, and especially so in economic and 
biological phenomena. After studying a comparatively simple model 
of a phenomenon and comparing the formulated conclusions with 
observations of the phenomenon itself, we can judge the quality of our 
model and specify it if necessary.  

When constructing a mathematical model, it is tacitly assumed that 
mathematical analysis is only applicable to studying the process of the 
changes of some system if each of its possible states and its evolution 
is exhaustively described by some chosen mathematical tool. We 
should apparently consider the Newtonian mechanics as one of the 
most remarkable mathematical models of the surrounding phenomena 
of a certain kind. 

A simple pattern of the course of a process and the connected 
mathematical arsenal of the differential and integral calculus have by 
now been perfectly describing numerous processes for a quarter of a 

83



millennium. The advances of mechanical engineering and the flights of 
the first spaceships not only in the Earth’s vicinity but to other planets 
as well are essentially based on a wide application of the classical 
Newtonian mechanics. It assumes that the motion of a system of mass 
points is completely described by the position and velocity of each of 
them. In other words, by indicating these data for moment t allows us 
to calculate the unique state of our system for any other moment. For 
achieving this aim mechanics offers equations of motion. 

Note that the state of a system of points only understood as their 
positions at moment t is insufficient for uniquely determining 
subsequent states of the system. For the Newtonian mechanics, the 
[mentioned] notion of state ought to be extended by adding the values 
of the velocities at a given moment.  

All that which is situated beyond classical mechanics, that is, all 
modern physics, has to deal with a considerably more complicated 
situation in which the knowledge of the state of a system at a given 
moment cannot anymore uniquely determine its future states. For 
Markov processes uniquely determined are only the probability of 
passing into some state during a certain period of time. We may 
consider Markov processes as a wide extension of processes studied by 
classical mechanics51.  

13.3. Simplest Flows of Events. In many practically important 
situations or those interesting from cognition we have to ascertain the 
regularities in the occurrence of certain events (of ships arriving at a 
seaport, failures of complicated devices, changes of burned out bulbs, 
moments of the decay of the atoms of a radioactive substance etc). 
Calculations pertaining to the work of consumer services (hairdressers, 
shops, public transportation, number of beds in hospitals, capacities of 
locks, crossings, bridges etc)52 are closely linked with studying such 
flows. In the 1930s the moments of arrival of airplanes at large airports, 
of cargo boats at seaports, the calls to first-aid stations and telephone 
exchanges etc had been thoroughly studied. It occurred that in all those 
cases the occurrences of the mentioned events were sufficiently well 
described by the following regularity. 

Suppose that Pk(t) is the probability of the occurrence of k events of 
a flow during time interval t. Then, for k = 0, 1, 2, … the equalities 

 

Pk(t) = λ(λ )

!

k
tt

e
k

−                                                                       (13.1) 

 
are satisfied with a high precision. Here, λ is a positive constant 
describing the intensity of the occurrence of the events of the flow. In 
particular, the probability that no event arrives during time t is 
 

P0(t) = e–λt.                                                                               (13.2) 
 
Molecular physics studies the probability that during a given period 

of time t a given molecule will not collide with any other molecule. 
Books devoted to such problems indicate that that probability indeed 
equals e–λt. If the flow of events is here understood as the moments of 
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collisions of the given molecule with other molecules we will indeed 
determine the probability that no event will occur during time t. 

It is natural to suppose that there exists a general cause leading to 
the occurrence of the same regularity of those so differing phenomena. 
And it was indeed discovered that under very wide conditions there 
exist various and profound causes leading to the just described 
regularity. Already at the beginning of the 20th century Einstein and 
Smoluchowski who studied the Brownian motion discovered the first 
group of such conditions. Suppose that a flow of events has the 
following three properties:  

1. Stationarity: For any finite number of non-intersecting intervals 
of time the probability of the occurrence of k1, k2, …, kn events only 
depends on those numbers and on the duration of the time intervals. In 
particular, the probability of the occurrence of k demands in interval 
(T, t + T) does not depend on T and is only a function of k and t. 

2. Lack of after-effect: The probability of the arrival of k events of 
a flow during time interval (T, T + t) does not depend on the number 
of the previously arrived events or on how did they arrive. This 
requirement means that the studied flow is a Markov process. 

3. Ordinariness: The occurrence of two or more events during a 
very short period of time is practically impossible.  

A flow of events satisfying these three conditions is a simplest flow. 
It can be proved that equation (13.1) completely characterizes a 
simplest flow which can also be defined otherwise: it is a flow of 
randomly distanced moments of time with formula (13.2) indicating 
the probability that the distance between adjacent moments is longer 
than t. This definition is also frequently used when solving many 
applied and theoretical problems. 

A direct check of the fulfilment of the three mentioned conditions 
(stationarity, lack of after-effect and ordinariness) is often difficult and 
it is therefore very important to derive other conditions for deciding on 
other grounds whether a flow is simplest or near to being it. A number 
of researchers have found such a condition, and here it is. 

Suppose that the studied flow is a sum of a very large number of 
stationary flows each only little influencing the sum. Add a restriction 
of an arithmetical nature which ensures the ordinariness of the 
summary flow, and it becomes near-simplest. This theorem, which 
Khinchin, one of the creators of modern theory of probability, proved 
in a general form, is fundamentally important for applications. Indeed, 
it very often ensures formulation of serious conclusions by issuing 
from the general structure of a flow.  

Thus, a flow of calls arriving at a telephone exchange can be 
considered as a sum of many independent flows each insignificantly 
influencing that sum. It follows that that summary flow ought to be 
near-simplest. Just the same, a flow of cargo boats arriving at a given 
seaport consists of a large number of flows departing from various 
other seaports and should therefore be near-simplest, and so it really is. 
Other examples are also possible53. 

13.4. A Problem in the Queuing Theory. The following problem 
is typical for many practically important cases. We will first describe it 
in its applied aspect, as it frequently appears to designers of plants,  
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department stores, storehouses, and telephone exchanges.  
There are various businesses and establishments for satisfying some 

requirements of the population: hairdressers’, telephone exchanges, 
hospitals, dental out-patients’ clinics. Demands for service arrive at 
random moments and the duration of services is also random. How to 
meet these demands if there are n servers/servicing facilities?  

It is easy to see that the described picture sufficiently reflects the 
real situation. We are unable to indicate just when will the customers 
arrive at a hairdressers’ or dental clinic and we know well enough that 
it is often necessary to wait for service but that sometimes we are 
serviced immediately. Just the same, the time required for completing 
an apparently the same operation seems to be constant, but actually 
considerably differs from one case to another. A treatment of a tooth 
can only consist in its cleaning or, alternatively, in filling it.  

Both customers and managers are first of all naturally interested in 
such characteristics of service as the length of queues, average waiting 
time, traffic intensity provided that the average rates of the arrival of 
demands and servicing are known. We assume that 

1) The flow of demands for service is simplest. 
2) The duration of servicing is random and the probability of its 

being not less than t equals e–vt with a constant positive v. 
3) Each demand is served by one server/servicing facility. Each 

server/servicing facility services one demand at a time.  
4) If a queue has formed, as soon as the server serves his customer, 

he begins to serve the next one. 
Denote by Pk(t) the probability that at moment t there are k demands. 

Under the stipulated conditions these probabilities can be defined for 
any k = 0, 1, 2, … However, the precise formulas are awkward and 
other, preferable formulas are derived from them for an established 
pattern of work. They are incomparably simpler:  

 

pk = 0 0

ρ ρ
,  ,0 ;   .

! !

k k

k k n
p pk n p k n

k n n −= ≥≤ ≤            (13.3, 13.4) 
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=

÷ +
−∑  ρ < n; p0 = 0, ρ ≥ n.                (13.5) 

 
In these formulas, ρ = λ/v. By formulas (13.3) and (13.4) it occurs that 
at k ≥ 1 pk = 0 as well. 

This means that if ρ ≥ n and the process of serving is established, 
any finite number of demands can only exist with zero probability; 
infinite many demands and an infinitely long queue will exist with 
probability 1. If ρ ≥ n, the queue will unboundedly grow with time. 

Our conclusion is very important. Since the number of 
servers/servicing facilities (runways in airports, berths in seaports, 
beds in hospitals, cash desks in shops etc) is often calculated under a 
false assumption of an ideal capacity of a system equal to the product 
of the number of servers/servicing facilities by the duration of their 
work in a given period divided by the average duration of servicing 
one demand [ideal traffic intensity]. Owing to the irregular arrival of 

86



demands such calculations lead to queues and therefore to waste of 
time and loss of money and potential customers. 

The methods of the theory of queuing certainly ensure the 
possibility of ascertaining the damage inflicted by overloading a 
system as well as the losses incurred by having excessive 
servers/service facilities. Many examples can be provided for showing 
that that theory had been necessary when devising telephone 
exchanges, establishing teams of repairmen in factories, planning the 
capacity of large airports or tunnels for highways with heavy traffic. 
Nowadays, the theory of queues is becoming ever more important for 
designing computers, search machines, in nuclear physics, biology etc. 

13.5. On a Problem in the Theory of Reliability. During the last 
quarter of the 20th century serious worldwide attention has been paid to 
a new scientific discipline christened theory of reliability. It aims at 
developing general rules for designing, manufacturing, accepting, 
transporting, storing, and applying industrial articles for ensuring 
maximal efficiency of their usage. 

In addition, the theory of reliability naturally works out methods for 
calculating the reliability of complicated articles and technical systems 
by issuing from the characteristics of the reliability of their 
components. The importance of those aims is unquestionable since our 
entire life is directly and obliquely connected with the application of 
various technical devices and systems. We go to and from work by 
buses and trams, in our apartments we switch the light and turn taps on 
and off. Hospitals apply various pieces of equipment for aiding vital 
functions of patients. For example, after an operation on kidneys and 
during the period of their restoration artificial kidneys are functioning 
instead. Millions of passengers are yearly travelling across the world 
by air. And in each case we are extremely interested in an absolutely 
proper work of the applied technical means. Violation of this 
requirement can lead to fatal consequences: an airplane can crash, an 
artificial kidney can fail etc.  

Such problems seem to have nothing in common with the theory of 
probability and ought to be solved by designers and the engineering 
staff of factories. Actually, however, this opinion is wrong. A large 
part of the problem connected with the study of quantitative 
calculations, elaboration of expedient plans of testing the quality of 
manufactured articles and formulation of the pertinent conclusions, 
determination of best schedules for preventive inspections and repairs, 
is incumbent on mathematicians. And it occurs that all the necessary 
main characteristics of the articles are of a stochastic nature. Thus, for 
mass articles manufactured by the same factory, from the same raw 
materials and under the same conditions the duration of work until 
failure is considerably scattered. We may quite definitely imagine this 
fact when recalling how sharply the working lives of electric bulbs are 
fluctuating. Sometimes they work faultlessly for a few years, but 
sometimes they have to be replaced after only several days.  

Observations over long periods and numerous special experiments 
convincingly showed that we are unable to determine precisely the 
working life of an article and can only estimate the probability that it 
will not be shorter than a given number t. The theory of probability 
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thus confidently enters all the problems of the theory of reliability and 
provides the main methods for solving them.  

Let us now consider a simple problem and only outline the 
necessary calculations. We do not therefore complicate our account 
but at the same time describe our problem clearly enough. It is well 
known that by no means there exist any absolutely reliable elements or 
articles. Each element, however perfect are its properties, loses them 
with time. For enhancing the reliability of articles we ought to follow 
various paths: weaken the conditions of their work, look for better 
materials, new structures or layouts of connections [!] . One of the most 
usual methods for achieving this aim is the introduction of 
redundancies. In essence, this means that redundant elements, their 
sets or even whole units are included in the system and begin working 
just as the main elements (sets, units) fail.  

For ensuring uninterrupted transportation redundant diesel and 
electric locomotives are kept at railway junctions. All large power 
stations have additional current generators, especially important power 
lines have auxiliary lines in parallel only partly functioning during 
normal conditions, and cars have spare wheels.  

Suppose there are n devices which ought to function simultaneously 
for time t. They fail independently from each other, the system [!]  fails 
if at least one device fails, and the common probability that one of 
them will not fail during that time is p. By the Bernoulli formula the 
probability of an uninterrupted work of the system is pn.  

How will this probability change if the system has m redundant 
working devices and fails if less than n out of (n + m) of them are 
performing? By the addition rule the probability sought is 

 

1
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m
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Here is a simple example. Let n = 4, m = 1 and p = 0.9. It is not 

difficult to find out that the probability of an uninterrupted work of the 
system was previously 0.6561 but that with only a single redundant 
device it becomes 0.9185, 1.5 times higher and 0.9841 with two 
redundant devices. This is why a single redundant current generator 
almost completely excludes failures of power stations. The reliability 
of systems increases many times over by introducing redundancy with 
restoration. Each failed component is then immediately repaired and 
returned in reserve. 

We have only considered a simplified problem of the theory of 
reservation by redundant elements. Much more complicated 
mathematics and primarily the theory of stochastic processes are 
necessary for studying the same problem under real conditions. 
Nowadays many important problems of the theory of reliability are 
already solved, but a large number of them are still far from being 
satisfactorily and fully dealt with. Systematic work will allow their 
solution under somewhat weakened conditions and open the way for 
studying them under more real assumptions. 
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Conclusions 

During the latest decades the theory of probability became one of 
the most rapidly developing mathematical sciences. New theoretical 
results reveal other possibilities for applying its methods in natural 
sciences and practice. At the same time, subtler and more detailed 
studies of natural phenomena, technological, economic and other 
processes prompt the theory of probability to search for new methods 
and discover new regularities generated by randomness. This theory is 
one of those mathematical sciences which do not cut themselves off 
from life or the requirements of other sciences, but are rather keeping 
abreast of the general development of natural sciences and technology. 

The reader should not however wrongly think that the theory of 
probability has now only become an auxiliary means for solving 
applied problems. Not at all! During the latest decades it became a 
harmonious mathematical science with its own problems and methods 
of research. And it also occurred that the most important and natural 
problems of the theory of probability considered as a mathematical 
science are helping to achieve urgent aims in applied fields. 

The theory of probability originated in the mid-17th century in 
connection with the works of Fermat (1601 – 1665), Pascal (1623 – 
1662) and Huygens (1625 [1629] – 1695). Embryos of the notions of 
probability of a random event and expectation of a random variable 
have appeared in their work. Their starting point was the study of 
problems connected with games of chance, but they clearly saw the 
importance of the new concepts for studying nature. For example, 
Huygens stated54: 

The reader will soon understand that I have thrown out the elements 
of a new theory, both deep and interesting. 

Among scholars who had essentially influenced the development of 
the theory of probability it is necessary to indicate Jakob Bernoulli 
(1654 – 1705) already mentioned above, De Moivre (1667 – 1754), 
Bayes ([ca. 1701 –] 1763), Laplace (1749 – 1827), Gauss (1777 – 
1855) and Poisson (1781 – 1840). 

A powerful development of the theory of probability had been 
closely linked with the traditions and advances of Russian science. In 
the 19th century, in Europe, this theory came to a dead end whereas the 
Russian mathematician P. L. Chebyshev (1821 – 1894), a man of 
genius, discovered a new direction of its further development, a 
thorough study of sequences of independent random variables55.  

He himself and his students, A. L. [A. A.] Markov (1856 – 1922) 
and A. M. Liapunov (1857 – 1918), by following him, arrived at 
fundamental results (the law of large numbers, the Liapunov theorem). 
Readers are already acquainted with the law of large numbers and our 
next aim is to provide a notion of another most important proposition 
of the theory of probability which became known as the Liapunov 
theorem (or the central limit theorem).  

It is important since a considerable number of phenomena whose 
outcomes depend on chance largely obey the following pattern: the 
studied phenomenon is influenced by great many independently acting 
random factors each of which only insignificantly affects its general 
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course. The action of each such factor is expressed by random 
variables ξ1, ξ2, …, ξn, and their summary influence56, by their sum, 

 
Sn = ξ1 + ξ2 + … + ξn. 
 
It is practically impossible to take account of each (in other words, 

to indicate their laws of distribution) or even to enumerate them.  
Clearly, therefore, the development of methods allowing the study 

of their summary action independently from the essence of each 
separate summand is of utmost importance. Usual methods of research 
are here helpless and ought to be replaced by those for which the large 
number of acting factors will be not an obstacle, but, on the contrary, a 
relief. Such methods should compensate the insufficient knowledge of 
each isolated factor by their large number.  

The central limit theorem largely established by Chebyshev, 
Markov and Liapunov, states that, if the acting causes ξ1, ξ2, …, ξn are 
mutually independent, their number very large and the action of each 
as compared with their summary influence unimportant, the law of 
distribution of their sum S can only slightly differ from a normal law.  

Here are pertinent examples. When firing shells, the unavoidable 
deviations of the hit-points from the target are represented by the well 
known phenomenon of scattering. It is the result of the influence of a 
great number of independently acting causes (irregular milling of some 
parts of a shell, irregular density of its material, insignificant variations 
in the standard amount of the explosive, unnoticeable errors in aiming 
the artillery gun, insignificant variations in the state of the atmosphere 
and many others) each of which only insignificantly influences the 
shell’s (the shells’) path(s). The theory of firing takes this fact into 
account and reflects it in manuals.  

When measuring some physical magnitude, a great many factors 
unavoidably influence the obtained results. Taken by itself, each such 
factor cannot be accounted for, but they lead to errors of measurements. 
Among them are the changes in the state of the instrument whose 
indications can somewhat vary under the influence of various 
atmospheric, thermal, mechanical and other causes. There also are the 
errors of the observer caused by the peculiarities of his eyesight or 
hearing which also change with his mental or physical condition. The 
actual error of observation is thus the result of great many insignificant, 
mutually independent, so to say elementary errors depending on 
chance. By the Liapunov theorem we may again expect that the errors 
of observation obey a normal law57. 

Any number of such examples can be provided: the positions and 
velocities of gas molecules determined by a large number of collisions 
with other molecules; the amount of a diffused substance; deviations 
of the sizes of machine parts from the standard in mass manufacturing; 
the distribution of the heights of animals [of the same species] or of 
the sizes of their organs, etc. 

For the theory of probability the advances of physical statistics and 
of a number of branches of technology raised a large number of 
absolutely new problems which did not fit into the confines of 
classical patterns. Physics and technology were interested in studying 
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processes, i. e., phenomena proceeding in time whereas the theory of 
probability had no general methods, no developed partial patterns for 
solving problems caused by the study of such phenomena.  

There appeared an urgent need to develop a general theory of 
stochastic processes (of random variables depending on one or more 
changing parameters)58. The beginnings of such a general theory were 
due to the fundamental work of Soviet mathematicians, A. N. 
Kolmogorov and L. Ya. [A. Ya.] Khinchin. In a certain sense this 
theory has been developing the notions connected with sequences of 
dependent random variables introduced by Markov in the first decade 
of the 20th century (Markov chains). He only considered his theory as a 
mathematical discipline, but in the 1920s physicists converted it to 
become an effective tool for investigating nature.  

Later, many scientists (S. N. Bernstein, V. I. Romanovsky, 
Kolmogorov, Hadamard, Fréchet, Doeblin, Doob, Feller and others) 
essentially contributed to the theory of Markov chains. Also in the 
1920s, Kolmogorov, E. E. Slutsky, Khinchin and Lévy discovered a 
close connection between the theory of probability and the 
mathematical disciplines studying sets and the general notion of 
functions (set theory and the theory of functions of a real variable). 
Somewhat earlier Borel arrived at the same concepts. Their discovery 
proved extremely fruitful and it was in this direction that the final 
solution of the classical problems formulated by Chebyshev was 
found59.  

Lastly, we ought to indicate the work of Bernstein, Kolmogorov and 
Mises devoted to the construction of a logically harmonious theory of 
probability60 capable to cover various pertinent problems formulated 
by natural sciences, technology and other branches of knowledge. 
However, in spite of considerable advances in the construction of a 
logical foundation of the theory of probability achieved by those 
authors, research in that direction is continuing intensively enough.  

One of the reasons of this fact is the desire to understand the nature 
itself of randomness, to establish the connections between randomness 
of phenomena and their determinativeness. Nowadays, reassuring 
approaches to this great and important problem of general 
philosophical interest are discovered (if not its complete solution). 

The further development of the theory of probability, just as each 
growing field of knowledge, requires an uninterrupted influx of fresh 
forces. It opens up a wide field for displaying the talents of young 
researchers, for their creative work. A deep interest in all sides of the 
theory of probability is needed for such talents to come into 
blossoming, an interest in the problems of its logical underpinning, in 
its connections with other mathematical disciplines, in disclosing new 
problems appearing in natural sciences (in physics, biology, chemistry 
etc), engineering, managerial work, economics and other areas of 
theoretical and practical activities.  
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Notes 
1. The publishers listed the editions of this book (including those which had 

appeared in foreign languages). The seventh edition of 1970 was preceded by the 
sixth edition of 1964, the first to appear after Khinchin’s death. 

2, § 1.1. In the second example we should have rather mentioned unsuccessful 
results. However, successful in the theory of probability are the results which lead to 
the occurrence of the studied event. G&K. 

3, § 1.1. This means that the particles are in an indifferent equilibrium. G&K. 
4, § 1.1. In 1913, Markov (Petruszewycz 1983) studied the alteration of vowels 

and consonants in the Russian language. Knauer (1955) described early applications 
of statistics to linguistics. 

5, § 1.3. Chebyshev (1845/1951, p. 29) and Boole (1851/1952, p. 251; 1854/2003, 
p. 246) defined the aim of the theory of probability as determining the probability of 
an event (of a proposition, as Boole suggested at first) by issuing from the given 
probabilities of other events. This definition seems to have persisted. 

6, § 2.3. This is the principle of mangelden Grunden (Kries 1886, p. 6) which 
Keynes (1921/1973, p. 44) renamed principle of indifference. Laplace (1814/1995, p. 
116) recommended to adopt hypotheses but rectify them incessantly by new 
observations. 

7, § 2.3. Verification was necessary by studying all the drawings, but then only 
(any) one of them became sufficient. 

8, § 3.1. A bulb is standard if it can burn for 1200 hours; otherwise, it is 
substandard. G&K. 

9, § 3.1. This is easy to calculate. Of each 100 bulbs 700 in the mean are 
manufactured by the first factory; and of each of these 100 bulbs 83 are standard. 
Consequently, of the 700 bulbs 7·83 = 581 will be standard on the average. The other 
189 standard bulbs are manufactured by the second factory. G&K.  

10, § 3.3. This means that out of 100 specimens selected from the first skein 84 in 
the mean endure such a load and 16 do not. G&K. 

11, § 3.3. Instead of a timely explanation of the pertinent principle, four 
significant digits are chosen instead of two! Same mistake in Example 1 below and 
in § 13.5. 
    12, § 4.3. Why should a location of a destroyed target be corrected? Same 
unimaginable attitude described in Example 1 below. 

13, § 4.3. We somehow know the prior probabilities … This is the only remark 
(an oblique hint at that) about the serious shortcoming of the Bayes theorem.  

14, § 4.3. A strangest idea. No one (at least until the advent of the computer) ever 
corrected or could have corrected artillery gunfire by the Bayes (or any other) 
theorem. For that matter, how many artillery men ever heard about Bayes? 

15, § 4.3. Positive answer of a test is actually explained a few lines below.  
16, § 5.1. In Example 1 of § 1.1 the figure well known in demography was 516. 

Below, the calculation is doubtful since different families apparently have differing 
inclinations to bear male (say) babies. In 1904, Newcomb (although certainly not a 
demographer) introduced three such classes of families (Sheynin 2002, pp. 153 – 
154). 

17, § 5.2. It is much more usual to say that those formulas describe the binomial 
distribution. The statement just below that (n – k) is a large number is not generally 
true. 

18, § 5.3. Owing to obvious difficulties, I omitted all the diagrams.  
19, § 5.3. Actually, 197/17 ≈ 11.6. 
20, § 6.1. Bernoulli discovered his theorem about 20 years before his death [in 

1705] but it was only published in 1713. G&K.  
The Bernoulli theorem is described unsatisfactorily. Bernoulli proved an 

extremely important existence theorem (and it was quite proper to say something 
about them) and studied the rapidity of the approach of the statistical probability to 
its theoretical counterpart. He did not yet know the (De Moivre −) Stirling formula 
and this study was therefore not satisfactory. In Chapter 4 of pt. 4 of his Ars 
Conjectandi Bernoulli formulated the inverse problem so that his theorem did not 
conform to his aim, but he alleged that he had solved both the direct and the inverse 
theorems. Only Bayes (Sheynin 2010) indicated that the inverse problem was less 
precise. 
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Contrary to the authors’ statement, Bernoulli proved his existence theorem in an 
elementary way. They also failed to mention Poisson. 

21, § 7.1. By definition, a meteorite is a small celestial body that reached the 
Earth. 

22, § 7.1. This sentence is unfortunate. 
23, § 7.2. It can be argued that no points should be awarded for missing the target. 

However, if a point means the right to shoot, even a miss provides a point. G&K.  
24, § 7.2. The knowledge of the law of distribution of a random variable is indeed 

sufficient, but it is also the most possible knowledge. 
25, § 7.2. We may also consider 2 as a possible value of ξ + η having probability 

zero just like we did in table (I): for the sake of generality we stated that value 1 was 
possible. G&K. 

And like stating that a probability equals 0 + 0.04. 
26, § 8.1. The mean result is also random. 
27, § 8.1. Beginning with De Moivre (1756, p. 3; possibly in the earlier editions 

of this book as well) expectation is simply defined rather than derived and the 
authors should have mentioned this fact. It is opportune to remark that Laplace 
(1812/1886, p. 189) had proposed the term mathematical expectation to distinguish it 
from the then topical moral expectation. His term is still being unnecessarily applied 
at least in French and Russian literature. Statistical probability (§ 1.1) is introduced 
as though it is the theoretical probability.  

28, § 8.1. We assume that a part rejected when assembling a device is not used 
anymore. G&K.  

An unsuccessful attempt therefore means that a part is lost, but the authors had 
not mentioned this circumstance. 

29, § 8.1. An error of, say,  ± 10 m means that both 10 and − 10 m have 
probability 0.16. G&K.  

30, § 8.1. Always is never stated in scientific definitions or statements, but the 
authors repeatedly (e. g., in § 9.1) apply this as also other unnecessary and possibly 
confusing words (purely random, in the beginning of § 7.1). 

31, § 9.1. It would have been in order to say a few words about direct and inverse 
statements in general. Such statements are also mentioned in Note 20 and § 12.3. 

32, § 10.1. On the mathematical meaning of true value see Sheynin (2007). 
33, § 10.2. Is this a hint (repeated below) at empirical densities? 
34, § 10.2.2. The authors did not introduce standard deviation. 
35, § 10.2.3. Shells fall around … This is the only statement (and only an oblique 

hint) that the scatter of shells is two-dimensional.  
36, § 10.3. Technologists decided that the creation of a theory of tolerances based 

on considerations and conclusions of probability theory was needed. G&K. 
37, § 10.3. A strange example: a distance of 200 m measured so roughly! In § 

11.2 the same distance is supposed to be measured 10,000 times! 
38, § 11.1. The authors should have explained why the estimate (11.2) is very 

rough.  
39, § 11.2. Poisson is forgotten once more (cf. Note 20). In § 11.3 Chebyshev is 

justly credited with a more general statement. 
40, § 11.2. A few specimens each containing, say, 100 – 200 g are selected, 

whereas the entire amount of wheat measures tens and perhaps hundreds of tons of 
grain. G&K. 

A few words about sampling in general would have been in order. 
41, § 11.3. A wrong statement. Systematic errors are unavoidable and there 

always exists some dependence between observations. It was understood long ago 
that an excessive number of observations is useless. See Sheynin (1996, pp. 97 – 98). 

42, § 11.4. Fechner (Sheynin 2004, pp. 60 – 61) discussed the origin of the errors 
of reading and their influence, but hardly satisfactorily. Geodesists never considered 
the errors of reading separately from all other errors. Cournot (1843, § 139), 
certainly not a practitioner, thought otherwise and his considerations are properly 
forgotten and I doubt that the authors could have justified their statement. 

Moreover, contrary to their statement, the error of reading is not constant and the 
error of the arithmetic mean of readings (of two or three at most) is not the same as 
the error of one reading. 

Mathematicians are generally ignorant of the theory of errors. In the beginning 
and mid-19th century French scientists including Poisson had been enraged by 
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Legendre’s alleged mistreatment at the hands of Gauss, and to their own 
disadvantage did not read that great scholar. Laplace knew better than that but he 
kept to his own almost useless theory of errors nevertheless venerated for many 
decades. And even Chebyshev (who included the theory of errors in his lectures) did 
not study Gauss. See Sheynin (1996). 

43, § 12.1. A few lines above the law of distribution was assumed known. 
44, § 12.1. The scatter of shells is also discussed in Example 5 of § 12.4 and in the 

Conclusions and each time somewhat differently. Factors influencing crop capacity 
are somewhat differently mentioned in §§ 7.1 and 10.1.  

45, § 12.1. Cf. also the Conclusions. G&K.  
46, § 12.2. How a deviation (or an error) of a few metres can be important when 

measuring a distance between settlements?  
47, § 12.3. For readers acquainted with elements of higher mathematics we note 

that the equation of the curve representing a normal law is 
 

y =
2

2

1 ( )
exp[

2σσ 2π
].

x a−
−   

 
Here, exp(x) = ex; e = … is the base of natural logarithms; π = … is … and a and 

σ2 are the mean value and variance of the random variable. The knowledge of the 
analytical form of the normal law can considerably simplify the acquaintance with 
the following text, which is however easily understood to readers unacquainted with 
higher mathematics as well. G&K. 

Why the notion of curves of distribution (§ 12.2) is not similarly explained? 

48, § 12.3. Symbol 
k
∑ should be understood as 

1

n

k=
∑ . G&K. 

The authors had not explained the latter symbol although on p. 25 did explain the 
meaning of three dots (omitted here). This is a usual occurrence: authors of popular 
writings begin explaining everything but soon have to abandon this intention. 

49, § 12.4. In addition to Note 44 I remark that the error of aiming an artillery gun 
certainly changes from shot to shot. 

50, § 13.1. This notation is at variance with the previous notation vx(t) etc. 
51, § 13.2. A few words should have been added about chaotic motion. 
52, § 13.3. Capacities of locks etc are mentioned under consumer services! 
53, § 13.3. The problem is at least heuristically connected with the central limit 

theorem which is only mentioned in the Conclusions. 
54, Conclusions. Translated by David (1962, p. 115).  
55. The theory of probability came to a dead end because Laplace forcefully 

transferred it from pure mathematics to an applied science. For many decades the 
splendid work of Chebyshev and his students had barely interested mathematicians 
because of that very circumstance, witness Markov’s report of 1921 (Sheynin 2006, 
p. 152): The theory of probability was usually considered as an applied science in 
which mathematical rigour was unnecessary. The renewal of the situation began 
with Lévy. 

56. In general, the acting factors should be expressed by differing random 
variables. 

57. We may indeed expect normality, but not at all always. 
58. At the end of § 13.1 and the beginning of § 13.2 only one parameter was 

mentioned.  
59. I doubt that such problems existed. 
60. Kolmogorov published several pertinent contributions of which we mention 

the lesser known note (1983). Bernstein (1917) seems to have been largely ignored; 
Khinchin (1961) published an essay on the Mises theory. Uspensky et al (1990, § 
1.3.4) stated about that theory: Until now, it proved impossible to embody Mises’ 
intention in a definition of randomness that was satisfactory from any point of view.  
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