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    The more difficult it seems to esta- 
blish logically what is variable and  

obeys chance, the more delightful is  
the science that determines the re- 

sults 
Huygens1 
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Note by Translator 
    Antoine Augustin Cournot (1801 – 1877) was a mathematician, 
philosopher, economist and educator (Feller 1961; Etudes 1978). Here, 
I discuss his contribution of 1843 reprinted in 1984 (Paris, Libraire J. 
Vrin) as vol. 1 of his Oeuvres Complètes complete with an 
Introduction and Commentary by B. Bru. 
    In this Introduction, Bru remarked that in 1828 and 1829 Cournot 
had published two notes on the calculus of chances and combinations. 
In 1834, Cournot translated J. Herschel’s astronomical treatise and 
appended a discussion of cometary orbits which constitutes here a 
large part of Chapter 12. A long paper on the application of the theory 
of probability to judicial statistics followed in 1838 and was largely 
reprinted here, in Chapters 15 and 16. 
    Bru’s commentary certainly demanded great efforts; by his 
permission, I quoted some of them adding his initials (B. B.). 
Regrettably, many of his comments are too short and for the same 
reason some of his references are not readily understandable.  
    He repeatedly mentions Condorcet, Lacroix, and certainly Laplace 
and Poisson as the main authors from whom Cournot had issued and 
he also notes (see p. 318, comment to p. 108, line 12) that Cournot had 
seldom indicated them. 
    Cournot reprinted Kramp’s table of the normal distribution 
appended to his book (1799); it is not included in the translation. 
    There exist translations of Cournot’s book into German (1849) by 
C. H. Schnuse, who also translated, in 1841, Poisson (1837), and into 
Russian (Moscow, 1970) by N. S. Chetverikov, the closest student of 
Chuprov. 
    A few of Cournot’s terms ought to be explained. Element is 
parameter; philosophical criticism apparently means philosophical 
discussion; a commensurable number is rational. And the same 
randomness is the same random variable. See explanation of Bernoulli 
theorems in § 30. And, finally, I have introduced the then still 

unknown notation n
mC  and n! 

    The Preface begins by an explanation: Cournot wished to make 
assessable his subject to those unacquainted with the higher chapters 
of mathematics. In § 123 he even repeated the formulation of the 
Pythagorean proposition (excluded in the translation) and in § 69 he 
says that he adduced a table (Kramp’s table) of a certain function (of 
the exponential function of a negative square) but he did not provide 
its analytical expression. I doubt that that was good enough, but then, 
his Chapter 12 was certainly beyond the reach of ordinary readers.  
    As Bru noted in his Introduction, the book was not understood in its 
entirety either by mathematicians or other scientists [!], frequently 
quoted […] but rarely read. 
    Cournot’s sentences are long-winded, up to 12 and 13 lines (§§ 117 
and 240/4). In many cases, perhaps copying Poisson (1837), he 
connected the parts of complex sentences by semicolons rather than 
words which is not easy to understand. Demonstrative pronouns are 
often lacking, but unnecessary repetitions are plentiful.  
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    [1] Cournot was obviously ignorant of precise observations 
(measurements) and he ignored Gauss. His Chapter 11 is therefore 
barely useful. 
    [2] Cournot (§ 145) considered himself a pioneer in applying 
statistics to astronomy, but he forgot to mention William Herschel, and 
he certainly had no means for studying the starry heaven. 
    [3] He did not study the application of statistics to meteorology 
although Humboldt, in 1817, had introduced isotherms, cf. Cournot’s 
definition of the aims of statistics in § 103! 
    [4] While discussing statistics of population (Chapter 13), Cournot 
had not mentioned Daniel Bernoulli’s classical study of prevention of 
smallpox published in 1766, and Gavarret’s contribution (1840) 
escaped his notice. For many decades, in spite of the work of Graunt, 
Süssmilch and Daniel B., later statisticians had avoided medical 
statistics. 
    [5] Many elementary calculations (in §§ 13. 70, 165 – 167, 170, 
182, 203, 204) are wrong which had not, however, affected Cournot’s 
general conclusions. 
    [6] Cournot’s description of the Bayes rule (§ 88) is superficial: he 
did not notice that Bayes had treated an unknown constant as a random 
variable. True, he (§ 89) remarked that without prior information that 
rule leads to a subjective result, and he (§ 95) attempted to prove that 
with a large number of observations that result becomes objective. Cf. 
Note 9 to Chapter 8. 
    His treatment of the Petersburg game is interesting, but he failed to 
refer to Condorcet (1784, p. 714) who had remarked that the possibly 
infinite game nevertheless only provided one trial so that many such 
games should have been discussed. Freudenthal (1951) expressed the 
same opinion and provided pertinent recommendations. 
    Poisson’s law of large numbers is ignored; during Poisson’s 
lifetime, Cournot (1838) had, however, at least twice mentioned it. It is 
generally known that the reason of that about-face was Bienaymé’s 
attitude. 
    Cournot’s description of tontines (§ 52) was completely wrong; see 
also Note 17 to Chapter 14. 
    Poisson (see Preface) indicated that Cournot discern[ed] the 
difference between chances and probabilities. However, in § 12, see 
also § 240/3, the latter stated that probability was the ratio of the 
pertinent chances. And he almost indifferently applied the terms 
theory, or doctrine, of probability, and of chances.  
    Now, however, I turn to other points whose positive aspect much 
prevail over the negative sude.  
    [1] Probability. Cournot’s subjective philosophical probabilities 
(§§ 43, 233 and 240/8) can be related to expert opinions whose study 
undoubtedly belongs to mathematical statistics. Laplace (1812, 
Chapter 2) had introduced them, noted their possible application to 
decisions of tribunals and elections, but did not introduce any special 
term.  
    In § 18 Cournot offered a definition of probability covering both the 
discrete and continuous cases (i. e., and geometric probability). He 
appropriately introduced the ratio of the extents (étendue) of the 
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pertinent chances; nowadays, we would have said of the measures. In 
§ 45 he objected to Laplace’s belief that probability is relative in part 
to our ignorance and in part to our knowledge.  
    Poisson’s letter to Cournot (see Preface) indicates that the latter 
discern[ed] the […] difference between the words chance and 
probability […]. However, in § 12, see also § 240/3, Cournot called 
probability the ratio of the pertinent chances and thus contradicted 
Poisson’s inference. And, see above, he almost indifferently applied 
the terms theory or doctrine of probability; or of chances. 
    [2] Probability density. In 1709 Niklaus Bernoulli introduced a 
continuous distribution (and its density) and many later scholars, 
including Laplace and Gauss, applied such distributions and densities. 
Cournot (§§ 64 – 65, see also § 31) followed suit. His term was curve 
of probability; it appropriately represented […] the law of 
probabilities of different values of a variable magnitude. Indeed, in § 
73, although after Poisson (1837, § 53), Cournot introduced a 
grandeur fortuitously taking a series of distinct values. True, in 1756 
and 1757 Simpson, in an error-theoretic context, had effectively 
applied such variables.  
    Cournot (§ 73) also described the determination of the density of a 
function u of a magnitude x which takes a series of various fortuitous 
values. Actually, he (§ 74) considered the case of a function of two 
independent variables and a linear function of many variables. 
Supposing that u = |x − y|, he concluded that for 0 ≤ a ≤ 1 P(u ≥ a) = 
(1 − a)2. The probability of the contrary event would have described 
the once-popular encounter problem (Whitworth 1886 and possibly 
1867; Laurent P. H. (1873, pp. 67 – 69): two persons are to meet 
during a specified time interval but their arrivals are independent and 
occur at random and the first to arrive only waits a specified time. 
    Before Cournot Bessel (1838, §§ 1 and 2) determined the densities 
of two functions of a continuous and uniformly distributed variable 
and Laplace solved such problems even earlier.  
    In § 81 Cournot studied a mixture of densities. Let n1, n2, … 
observations have densities f1(x), f2(x), …, then the mixture of those 
observations will have a density equal to the weighted arithmetic mean 
of f1(x), f2(x), … 
    [3] Median. It was Cournot (§ 34) who introduced this important 
parameter. 
    [4] Randomness. Cournot (§ 40) defined a random event as an 
intersection of (two) independent chains of other events and thus 
revived an ancient idea (Aristotle). In § 45 he mentioned the 
mathematical theory of randomness acting in the proper field of 
science and declared that randomness has a notable role […] in 
governing the world. Lacking was the dialectical link between 
randomness and necessity which Kant (1781/1911, p. 508) had clearly 
indicated: Randomness in a single case nevertheless obeys a rule in a 
totality.  
    Cournot (§ 43) connected randomness with physical impossibility, a 
very important notion, as he stated. It is physically impossible for a 
right circular cone to stand on its apex, as he remarked, but regrettably 
did not mention randomness. Indeed, here (as also when two chains of 
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events are intersecting) a small cause leads to a considerable effect 
which is Poincaré’s main and generally known explanation of 
randomness. 
    Physical impossibility is contrary to moral certainty which Cournot 
did not mention but which Descartes introduced in 1644 and Huygens 
mentioned in a letter of 1673 (Sheynin 1977, pp. 204 and 251), and 
Jakob Bernoulli recommended for application in law courts. And in 
1693 Leibniz (Couturat 1901, p. 232) stated that there existed three 
degrees of security in judgements: logical certainty, physical certainty 
(which is only logical probability) and physical probability. 
    In § 42 Cournot indicated another aspect of randomness: For 
properly understanding randomness, we should only attach to it the 
[…] idea of independence or absence of solidarity between different 
series of facts or causes. This is an interesting idea. According to one 
of the modern approaches to identifying a random numerical sequence, 
it should only have a small number of regularities. Note also that 
solidarity (a notion which Cournot repeatedly applies) had been known 
to astronomers from the antiquity. Thus, refraction (see § 230) is a 
common cause altering the zenith distances of all the stars, and 
horizontal refraction caused by meteorological factors became known 
in geodetic operations. In general, any observations or measurements 
are fraught with solidarity, − with systematic errors.  
    Cournot returned to the notion of randomness in his later 
contributions. Thus, he (1851/1975, § 33, Note 38) recalled Lambert’s 
forgotten attempt at formalizing randomness of the digits of irrational 
numbers by an intuitive notion about normal numbers.  
    Cournot appropriately mentioned Poisson (and had previously 
dedicated a contribution (1841) to his memory). Still, he had not 
hesitated to criticize Poisson (§§ 61, 93, 149 Note, 225 and 237). In § 
93 his criticism seems unwarranted: Poisson, whom he had not directly 
mentioned, did not provide the non-existing statistical data necessary 
for solving a problem about the births of boys and girls. Cournot 
thought that this circumstance was unbecoming of eminent geometers. 
In § 225 he criticized useless mathematical considerations, for 
example concerning the study of facts testified by a chain of witnesses, 
cf. Poisson (1837, § 39). 
    I take this opportunity to note Mises’ exaggerated opinion 
(1928/1930, p. 243) about Poisson (1837): it is one of the most 
remarkable books in the history of the development of mathematical 
theories.  
    [5] Jurisprudence. Following Poisson, but several times 
disagreeing with him, Cournot applied stochastic reasoning to verdicts 
and decisions of judges and jurymen in law courts. Unlike Poisson, he 
did not need to introduce a preliminary probability of guilt of an 
accused and he attempted to study the dependence between the voters. 
He concluded that cases should be separated into categories so as to 
ensure a useful analysis of data, to choose a certain category for 
further study, but at the same time (§§ 111 – 114) warned about the 
possible ensuing pitfalls: another classification could have suggested 
another category for additional investigation. When a large number of 
observations was available, the number of categories should be 
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increased, Cournot remarked (§ 115). Quetelet (1846, p. 278), 
however, believed that too many subdivisions of the data is a luxe de 
chiffres, a kind of charlatanisme scientifique. Finally, in connection 
with his study of classifying the data, Cournot introduced a pattern of 
stratified sampling (Stigler 1986, pp. 196 – 197). 
    [6] Statistics. I repeat that Cournot omitted applications of statistics 
to meteorology and medical statistics although emphasized its possible 
use in astronomy (and statistically studied planets and comets) and, 
apparently, chemistry (Note 9 to Chapter 11). According to his 
definition of statistics (§ 103), it collects and coordinates facts, it 
should appreciably exclude anomalies of chance and discover regular 
causes acting together with randomness. It (§ 105) should have its 
theory, its rules and principles, should penetrate into the essence of 
things (§ 106). 
    Cournot himself had not formulated any statistical rules or 
principles and did not mention statistics at all in his Summary (§ 240). 
Penetration etc had not then been generally accepted. Fourier (1821, 
pp. iv – v) stated that the spirit of dissertations and conjectures is in 
general opposed to the veritable progress of statistics and the just 
established London (now, Royal) Statistical Society declared that 
statistics did not discuss causes or effects (Anonymous 1839). This 
was the viewpoint of Staatswissenschaft, for many decades the rival of 
statistics as understood today.  
    On the other hand, opposite opinions had also been formulated: 
Statistics should investigate not only why, but even the why of the why, 
to explain the present state of a nation by its past (Gatterer 1775, p. 
15). Quetelet, in spite of his carelessness and even happy-go-lucky 
attitude (Sheynin 1986), had been advocating penetration into the 
essence of phenomena. Thus, he (1869, t. 1, p. 419) recommended to 
study (no doubt, statistically) the changes brought about by the 
construction of telegraph lines and railroads. And Cauchy (1845/1896, 
p. 242) thought that statistics offered a means for judging doctrines 
and institutions.  
    Bru (Introduction) stated that Cournot had left an incomparable 
testimony about the European [statistical] thought of the first half of 
the 19th century. However, those thoughts had not been united in a 
single school (see above) and, once more, Quetelet comes to mind. 
    Chuprov several times mentioned Cournot, one of the most profound 
thinkers of the 19th century (1909/1959, p. 30), the real founder of the 
modern philosophy of statistics (1925/1926, p. 227). The first 
statement (although likely representing all other achievements of his 
hero as well) is an obvious exaggeration. The latter opinion is difficult 
to evaluate. Kruskal (1978, p. 1082) called statistics a neighbour of 
philosophy, a part of philosophy of science. For a philosopher, 
statistics is a method of stochastic reasoning, partly inductive, and 
partly deductive. In any case, Cournot’s contribution was indeed 
philosophical. And still, Kries (1886) had barely noticed him and, 
much worse, Lexis (1879), who originated the Continental studies of 
the stability of statistical series, did not mention him (or Poisson). 
    Chuprov’s viewpoint is understandable since almost all treatises on 
statistics at least until the beginning of the 20th century had been 
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completely unphilosophical. Those contributions included a course of 
lectures written by Chuprov’s own father, an eminent 
nonmathematical statistician A. A. Chuprov, and first published in 
1886.  
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Preface 

    Here, I am setting myself two goals. First, I aim to make accessible 
the rules of the calculus of probability to those, unacquainted with the 
higher chapters of mathematics. Without that, it is impossible to 
conceive clearly either the precision of measurements obtained in the 
sciences of observation, or the values of the numbers provided by 
statistics, or the conditions of success of many commercial enterprises. 
And, second, I wished to correct the mistakes, to eliminate the 
ambiguities and dissipate obscurities from which, as it seems to me, 
the works of the most able geometers studying that delicate subject are 
not at all free. Since mistakes and obscurities concern the principles of 
the calculations rather than purely mathematical deductions, I thought 
that both these goals are compatible, so that instead of writing a book 
only for geometers I will seize the opportunity of inserting remarks 
useful for those attracted by that theory even if the exposition will be 
purely speculative. 
    And so, I attempted to ensure that the reading of my book will not 
require any other knowledge except elementary algebra, or even, 
strictly speaking, algebraic notation. Otherwise, I would have been 
compelled to replace it by verbiage at the expense of conciseness and 
clarity. I also wished to indicate the results of calculations and, if 
possible, to elucidate their meaning without entering into technical 
details of the pertinent proofs. Explanations containing necessary 
symbols of the infinitesimal calculus are placed in notes, but even in 
such cases I had often indicated rather than demonstrated the results.  
    The calculus of probability is only really important if applied to 
sufficiently large numbers, and for ensuring practicable results we 
therefore have to use approximations. I invariably had to make use of 
such formulas and, consequently, appended a table for applying those 
formulas to all the provided numerical examples without needing to 
know anything except ordinary arithmetic. To determine exactly the 
approximation furnished by those formulas and the conditions under 
which they can be safely used is an extremely difficult analytical 
problem. It is not yet solved in any complete way and I did not allow 
myself to touch it at all.  
    In the theory of probability, there occurs something similar to the 
mathematical theory of heat2. If a body is somehow heated and then 
subjected to the action of regular and constant sources of heat or cold, 
the temperature at each of its points gradually approaches a level 
called final so that all traces of the initial irregularities disappear. 
However, before reaching that final condition (which in the strict 
mathematical sense would have required infinite time) the temperature 
at each point passes through a certain state called penultimate. While it 
lasts, the law of the variation of temperature without sensible error 
obeys a regular and simple mathematical expression.  
    Just the same, the objects of the theory of probability are certain 
numerical relations which take constant and quite determined values 
when the number of trials made on the same randomness indefinitely 
increases. And when the number of trials is yet finite, those values are 
the closer to their final stage, and they oscillate between limits which 
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contract the more, the larger is that number. The mathematical relation 
between the amplitude of the oscillations and the number of the trials 
is greatly simplified when that latter becomes appropriately large. By 
analogy, it is then possible to call the situation the penultimate stage 
obeying the laws which are the most important in the mathematical 
theory of chances and represent the main object of this work. In 
general, it is not necessary to carry out a very large number of trials for 
achieving the transition to the penultimate stage. I insert many 
examples proving that, but I did not aim at establishing with 
mathematical precision the conditions for the appearance of that stage. 
Moreover, that would have been more interesting speculatively than 
practically.  
    To tell the truth, I attach most importance to that part of my work 
which aims at explaining the philosophical value of the notions of 
chance, randomness, probability as well as the real sense of the results 
of the calculations to which we are led by the development of those 
fundamental concepts. I provided repeated explanations of 
independence and solidarity of causes, of the double sense of the word 
probability as a certain measure of our knowledge and of the 
possibility of things irrespective of our knowledge about them. These 
explanations seem proper for resolving the difficulties which until now 
led eminent authors3 to suspect the entire theory of mathematical 
probability. 
    Here, the reader will find definitions and ideas which I believe to be 
new or at least had not been properly formulated. They brought me to 
consider the doctrine of posterior probabilities and most of the 
applications connected with them in way quite different from those 
adopted by really celebrated authors4. I will hardly yield to the 
authors’ illusion by suggesting that my ideas at least deserve to be 
discussed; that they will be able to interest philosophers as well as 
geometers; that in attracting the attention of those engaged in this field 
of human knowledge they can foster its later perfection. 
    The term probability had been the source of so many ambiguities5 
that I had at first intended to abandon it completely and to apply in 
appropriate cases either chance or possibility6. Then, however, I found 
it more inconvenient to reject a term so rooted in geometry. I also 
believe, and attempted to prove that the word probability has other 
meanings differing from, but sufficiently close to those applied in 
calculations of the geometers so that they should not be completely 
isolated from the latter in a philosophical exposition. 
    Circumstances permitting, some day I will try to develop the ideas 
which are only indicated here in the last chapter7. If I insist on my 
ideas still more, I fear that reproach for admixing too much 
metaphysics with geometry will follow. Est modus in rebus [There is 
measure in everything]. However, I have necessarily borrowed without 
scruple two epithets, objective and subjective, for radically separating 
the two meanings of the term probability as applied in the calculus. 
Here, however, I am following the example of Jakob Bernoulli8. 
    I hope that the readers will find here a selection of sufficiently 
differing applications for ensuring them a fair idea about the 
usefulness of the theory of chances and that those who search statistics 
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for something in addition to raw results9 will be able to try out their 
own possibilities on a path to new applications. I have considered in 
detail two curious problems which I had already treated before. One of 
them considers the distribution of the cometary orbits in space and the 
other has to do with the theory of probability of judgements and its 
application to statistical documents published in France by the 
Administration [Ministry?] of justice. Competent readers will 
pronounce their opinion about the value of my solution of this 
theoretical problem and compare it with those provided by other 
authors, notably by Poisson in his great work of 1837.  
    As to the application of judicial statistics, I have for the first time 
made use of the more precise data appearing in the Comptes généraux 
of the Administration of criminal justice as a result of changes in jury 
panels introduced by the law of 9 Sept. 1835. 
    I am not concluding this Preface, perhaps already protracted, 
without expressing gratitude to my excellent friend Mr. Bienaymé, 
inspector general of finances, whose work in statistics and probability 
is well known to geometers. For a long time, not knowing each other, 
we have been occupied with the same objects of study, then becoming 
closer because of a singular conformity of ideas and inclinations. 
During the printing of my book, he gladly helped me and was obliging 
to such an extent that even re-read the proofs and calculated anew a 
part of the numerical computations. He was all the more unselfish 
since long ago he came to the theory of posterior probabilities by 
issuing from considerations quite different from those that guided me. 
As it seems to me, this theory largely reappears here in Chapter 8. It 
will become possible to access our similarities and dissimilarities if he 
decides to publish his own researches10. At present, however, I hasten 
to acknowledge that the originality is all his and that his ability deftly 
to apply analysis undoubtedly enabled him to discover much of what 
had escaped my attention. 
    I ought to be excused for publishing here a letter which Poisson 
wrote me in response to my own in which I had sketched the subject of 
this book. I do it much less for maintaining my priority over some 
ideas than as a testimony of friendship the memory of which will 
invariably be precious to me, and for testifying about some opinions of 
the celebrated man. 
 

Paris, 26 Jan 1836 
    Sir, With great pleasure will I read the work on the Doctrine of 
chances which you propose to publish. What I am now completing will 
not hinder you at all, and I am leaving enough space for a more 
comprehensive book. I discern the same difference between the words 
chance and probability as you, and strongly insist on it. As to your 
approach to the main problem, the probability of judgements, I will 
compare it with my own after reviewing and definitively accomplishing 
that part of my work. I only have to finish that and to copy the entire 
text before being able to begin printing. There are some problems 
whose solutions I will include in one of the last chapters provided that 
I complete them at least to my own satisfaction. 
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    Finally, you will find in that work some metaphysical considerations 
and see that I am not at all denying that branch of human knowledge. I 
am writing this letter during a sitting of the Council11, and my turn to 
speak is about to begin, so I am unable to continue.  
    Be assured, Sir, of my attachment and undivided devotion. 

Poisson 
 

Notes 
    1. Following a nasty tradition, Cournot did not indicate the source of that 
statement. Bru found it: Huygens’ covering letter to F. van Schooten accompanying 
his contribution (1757) inserted in van Schooten’s book. Cournot quoted the Latin 
text published in 1760 whereas my translation is from the French version. 
    2. Cournot’s analogy between probability theory and the mathematical theory of 
heat is based on Fourier (1819; 1822). [B. B.] 
    3. D’Alembert, Poinsot (1836), Comte. [B. B.] Poinsot denied the application of 
the theory of probability beyond natural sciences. O. S. 
    4. Bayes, Condorcet, Laplace. [B. B.] 
    5. Pascal. [B. B.] 
    6. De Moivre applied the term chance in the title of his contribution (1718).  
    7. See Cournot (1851). N. S. Chetverikov, translator of Cournot into Russian. 
    8. See the first lines of the Ars Conjectandi. [B. B.] 
    9. Guerry (1864), Moreau de Jonnès (1847). [B. B.] 
        The former described in detail the early history of statistics. O. S. 
    10. I. J. Bienaymé (1796 – 1878), a greatest statistician of the 19th century, 
apparently never decided to publish his researches largely only known by short 
extracts published by the Société Philomatique and the Paris Academy of Sciences. 
All traces of his course of probability (Sorbonne 1848) are lost. See Heyde & Seneta 
(1977). [B. B.] 
    11. Conseil Royal de l’Instruction Publique. [B. B.] 
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Chapter 1. Combinations and Order 
    1. Among the abstract ideas not arbitrarily created by the human 
mind, but suggested to it by the very nature of things, that of 
combination is one of the most general and simple. After considering 
individual objects in isolation, we are led to understand that, according 
to their nature, those objects combine, or unite, one to another one, two 
to two other ones, three to three, etc, and form certain systems or 
complex objects which in turn can combine with each other and form 
other groups or more complicated systems, etc.  
    The theory of combinations which the Germans called syntactics1 is 
an abstract and purely logical science like the science of numbers and 
geometry. It is intimately connected with all branches of mathematics, 
notably algebra so that perfection, or, as it is called, elegance of 
algebraic formulas, achieved by aptly chosen notation, provides the 
greatest obviousness to the laws of combination. 
    In essence, each scientific synthesis successfully combines certain 
principles or primordial facts. From that viewpoint, logic, general 
grammar, chemistry, just as algebra, issue from combinatorics. 
Notably logic, in the theory of syllogisms, offers us a curious example 
of combinatorial synthesis. Logicians2 invariably require [of their 
followers] to form carefully all the possible combinations. Omitting 
only one of them is sufficient for the reasoning to become illegitimate. 
Actually, little did the logicians think about tracing the rules for 
securely compiling a complete record of the combinations involved. 
Not unreasonably, they thought that in simple cases such rules will be 
useless and impracticable otherwise. 
    A systematic and regular approach is unknown to most people or its 
application had been too slow for satisfying practice. Therefore, the art 
of forming combinations embracing all at once a more or less large 
number [of elements] depends on the aptitude and education of 
individuals. It is usual to understand as calculative minds those who 
more eminently possess that power of combination and apply it to 
various objects although most often calculations proper do not involve 
numerical reckoning. The mechanician, the geometer, the tactician, the 
chess-player is distinguished, each in his field, by his ability to form 
and classify combinations, and the common opinion admits an affinity 
between these aptitudes however different are the pertinent objects. 
    2. It is easy to understand that the rules ensuring the formation of all 
the possible combinations should implicitly include rules for 
calculating their number without having to form them one by one or to 
pay attention to each in particular. To provide a simplest example3: 
Suppose that a chemist is trying out all combinations of m acids with n 
alkalis. He is assured to omit no combination when denoting each acid 
and each alkali by signs or numbers in succession and combining acid 
No. 1 with each alkali, then repeating this procedure with acid No. 2, 
etc. However, it is seen at once that the total number of all the 
necessary trials or of all the abstractly possible combinations is mn. 
And if m and n are considerable numbers, 100 or 200, say, the product 
mn will be so large that the formation or even the enumeration of all 
the possible combinations becomes a long-winded and tiresome 
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operation. However, nothing is simpler and quicker than multiplying m 
by n. 
    We will see that the solution of very important and very curious 
problems about which this book is destined to provide an idea, 
essentially depends on the possibility of indicating the number of 
combinations of a certain type of objects or at least the ratio of such 
numbers for two different types of objects. At the same time, it would 
have been barely important or often impossible to consider these 
combinations one by one. 
    Therefore, in a more special sense, the theory of combinations is 
understood as a science aiming to assign the number of combinations 
of a given kind. Syntactics, thus reduced to determining their numbers, 
is naturally included in those branches of mathematics with which, as I 
said, it is intimately connected.  
    3. Suppose that m objects a, b, c, …, k, l of some kind should be 
combined. For exhausting all the possible combinations of two from 
two (binary combinations) we can combine the object, or element a 
with all the (m – 1) other elements b, c, …, k, l; then combine the 
element b with all the (m – 1) other elements a, c, …, k, l etc. We will 
thus have m(m – 1) combinations; however, each combination, for 
example ab, can evidently be obtained twice, as ab and ba so that the 
number of different binary combinations will be m(m – 1)/2. 
    Combinations of three from three, or tertiary combinations, will be 
exhausted if each binary combination ab is successively joined with 
each of the (m – 2) elements c, …, k, l. We will thus obtain the same 
combination abc three times: ab + c, ac + b and bc + a, and the 
number of the tertiary combinations will be m(m – 1)(m – 2)/2·3. It is 
not necessary to continue; by an evident induction we conclude that 

the number of different combinations of m elements from n is .n
mC  […] 

    Connect the pure idea of combination with certain relations of order 
or situation so that combination ba is now regarded as differing from 
ab. Then m elements will provide m(m – 1) binary combinations,  
m(m – 1)(m – 2) tertiary combinations, and, in general,  
 
    m(m – 1)(m – 2) … (m – n + 1)                                          (3.1) 
 
combinations (arrangements, selections) of order n from m elements. 
Various authors have not at all agreed about how to name those 
combinations in which not only the included elements, but also their 
order is taken into account. Most convenient, as it seems to me, is to 
call them ordered combinations without involving very particular 
considerations. On the contrary, we will call those, in which the order 
of the elements is not essential, absolute combinations, or simply 
combinations. 
    4. The number of ordered combinations is expressed by formula 

(3.1), and that of absolute combinations is .n
mC It follows that the 

denominator of n
mC , or n!, expresses the number of all changes of the 

order, or permutations of n elements. This is easy to prove by direct 
reasoning which will also show that the theory of permutations and of 
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order in general is actually the same as the theory of combinations 
presented from a different point of view. 
    Suppose that in some order in space or time or even (if it can be 
understood) independent from space and time there are m determined 
places denoted by numbers 1, 2, …, m, say. Two elements, a and b, are 
put there. We will exhaust all the possible arrangements (selections)4 
if a is put on place 1, and b, on each of the other places, 2, 3, …, m in 
succession; then a is put on place 2, and b, on each of the other places 
1, 3, …, m in succession, etc. Therefore, the number of arrangements 
of order 2 from m elements is m(m – 1). If the system includes a third 
element c, each of the previous arrangements, for example ab, can be 
supplemented by c taking each of the (m – 2) places 2, 3, …, m. The 
number of the arrangements will now be m(m – 1)(m – 2). And in 
general when m = n, the product (3.1) will become n!. 
    We can suppose that the ordered elements are letters written one 
after the other and form a series of the kind which geometers call 
linear5. This assumption, however, is only intended to ease the idea of 
applying a sign [?]. Indeed, there is nothing essential here except the 
notions of elements and order understood in the most general sense. 
We can imagine n points somehow distributed in space or n spheres of 
various radiuses whose centres successively coincide with each of 
those points. The product n! indicates also the number of the 
arrangements or the various configurations offered by the system of 
those spheres. We can also imagine n people occupying a social 
hierarchy having different functions and able to exchange their 
positions. Then the number n! will, as previously, indicate how many 
ways there are for modifying that hierarchic system. 
    The idea of absolute order can be restricted by introducing 
particular conditions and thus obtaining a smaller number of different 
arrangements. For example, if n elements are arranged in a circular 
series, or a periodic series indefinitely increasing or decreasing, 
without accounting for the definite places they occupy  and only taking 
into consideration the order in which they follow, the number of 
arrangements will be (n – 1)!. And, without distinguishing either left 
or right or increasing or decreasing order, that number should be 
halved.  
    5. When taking n elements out of m so as to form a combination of n 
elements from n, the total group will be separated in two, one of these 

consisting of n elements, the other, of (m – n) elements. Then n
mC  will 

indicate in how many ways this separation can be done. It follows that 

that quotient n
mC  ought also to express the number of different 

combinations characterizing the second partial group so that its value 

will not change if n is replaced by (m – n) […] and .m n
m n m nC C+ +=  

    Expression m
m nC +  can be directly obtained by considerations applied 

in the theory of order. Suppose that a system of (m + n) places is 
separated in two, A and B, of m and n places. The number of different 
arrangements for the initial system is (m + n)!. But then, if only 
considering the distribution of the elements among the two partial 
groups, the arrangements will only differ by permutations of order in 
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A or in B. Therefore, the product (m + n)! should be divided first by 
m! then by n!.  
    The same problem of order can be presented otherwise. Suppose 

that A has m letters and B, n letters. Then m
m nC +  will express the 

number of different ways for them to follow each other. Indeed, when 
considering that letters are individually different, the number of 
permutations will be (m + n)!. But in the contrary case the 
arrangements which only differ by their order in the partial groups 
should be regarded identical. If letters A and B denote respectively m 
and n events of the same nature following each other successively, the 

quotient m
m nC +  will express the number of ways of different 

successions. 
    An analogy will indicate well enough that, when separating a total 
group of m + n + p elements in three parts consisting of m, n and p 
elements respectively, the quotient  
 

    
( )!

! ! !

m n p

m n p

+ +
  

 
will express the number of different ways for achieving that purpose. It 
will also show how many different series can be formed with m letters 
A, n letters B and p letters C etc. It is needless to continue generalizing 
this reasoning. 
    Products n! invariably appear in the theory of order and 
combinations and therefore in its applications to other branches of 
mathematics, and analysts had called them factorials and attempted to 

study their properties. The properties of the numbers m
m nC + which 

combine three factorials had also been thoroughly studied. They are 
connected with those of certain functions appearing in higher analysis 
and are at present known as the Euler functions since Euler essentially 
advanced their theory. However, the nature of this book only allows 
me to indicate for some readers the connection of our present subject 
with other abstract speculations having less immediate applications. 
    6. If the same element can be repeated in the combinations (like 
letters in alphabetic, or digits in numerical combinations) factorials are 
replaced by powers of numbers. Thus, with m letters a, b, c, …, k, l we 
can form m2 binary combinations aa, ab, ac, …, ak, al; ba, bb, bc, …, 
bk, bl etc differing from each other either by composition or order of 
letters. There will be m3 tertiary combinations, and generally mn 
combinations of n letters or 
 

    
( 1)...( 1)

!

m m m n

n

+ + −
                                                           (6.1) 

 
if only taking into account absolute combinations, i. e. regarding 
combinations formed by the same differently ordered elements as 
identical. Conforming to the remark in § 5, instead of the expression 

above we can write 1
1.

m
m nC −

+ −   
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    Thus, when throwing two dice with six faces each, each face of the 
first die combines with each face, coinciding or not, of the second die. 
The number of combinations is 62 = 36. However, if we only consider 
the outcome, for example, 2 and 3, without examining on which die 
had each of those points appeared, the number of different throws is 
reduced to 6·7/1·2 = 21. For 3 dice the number of ordered 
combinations will increase to 63 = 216 and that of absolute 
combinations or differing combinations will be 6·7·8/1·2·3 = 56.  
    7. The preceding clearly enough shows the connection between the 
theory of combinations and one of the four fundamental arithmetical 
operations, multiplication. That operation is actually characterized in 
that if each factor is considered to be complex, formed by adding up 
some terms, the total product will be the sum of the partial products 
obtained by multiplying each term of one of the factors by each term 
of another. Thus, when considering two natural numbers m and n as a 
sum of m and n unities, the product mn will contain the same number 
of partial products, i. e. as many unities as binary combinations can be 
formed by taking one element from the first series of m of them and 
the other element from the second series of n of them. 
    The proof of the first theorem of the number theory immediately 
follows: the product of two numbers does not change whichever of 
them is considered the multiplicand or multiplier. And it is not difficult 
to conclude that the product of some number of factors does not 
change if their order is somehow permuted. It also follows that the 
algebraic multiplication of (a + b + c + …) by (a′ + b′ + c′ + …) 
contains all the binary combinations which can be formed when 
combining a letter from the first polynomial by another from the 
second. 
    When ordering the expansion of the product of m binomials (x + a), 
(x + b), (x + c), …, (x + k), (x + l) by the decreasing powers of x the 
coefficient of xm−1 will be the sum of a, b, c, …, k and l; of xm−2 and 
xm−3, the sums of the different products formed by the binomial and 
tertiary combinations of those letters, etc with the free term being the 
product of those m magnitudes. Suppose that all the magnitudes a, b, c, 
… are the same so that their sum is ma; the sums of their binary and 

tertiary combinations will be 2 2 3 3and m mC a C a , etc, and 1
n
m nC − +  will be 

the numerical coefficient of the term anxm−n in the expansion of  
(x + a)m. 
    That expansion, fundamental for algebra, is called the Newton 
binomial after the great [physicist and] geometer who discussed it. 
Somewhat earlier Pascal had provided its equivalent by constructing 
his arithmetical triangle. He had not written it in an algebraic manner 
which deprived it of the immense advantage attached to algebraic 
formulation6. 
    The coefficients of the binomial formula occur in many other 
formulas playing a considerable role in the higher parts of analysis. 
The cause of these analogies is easy to see: they obviously follow from 
the law of those coefficients being justified by a rule of combinatorial 
synthesis quite independently from the nature of the represented 
calculative procedure or the secondary idea of multiplication which 
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can be associated in the elements of algebra with the abstract notion of 
combination. 
    8. If x = a = 1 the binomial formula 
 

    (x + a)m = xm + (m/1)axm−1 + 2
mC a2xm−2 + … + am,         (8.1) 

 
after the first term on the right side is transferred to the left, provides 
 

    2m − 1 = m/1 + 2
mC + 3

mC + … + 1.                                  (8.2)  

 
    Thus, 2m − 1 is the number of all possible combinations out of m 
elements taken one from one, two from two, etc, and, finally, all of 
them together. Now let x = 1 and a = − 1, transfer the same term to the 
left and change all the signs: 
 

    1 = m/1 − 2
mC + 3

mC − …                                                 (8.3) 

 
    The positive part of the right side is the sum of the combinations of 
odd orders; and the negative part is the sum of the combinations of the 
even orders. When adding up the equations (8.2) and (8.3) the 
combinations of the even orders will disappear and the sum of the 
combinations of the odd powers will be 2m−1. Therefore, the sum of the 
combinations of the even powers will be 2m− 1 − 2m−1 = 2m−1 − 1. The 
first sum exceeds the second by a unity whether m is even or odd. This 
result was thought to be strange and attempts were made to justify it 
by prior considerations, but, while treating a more general problem, I 
(1829) had shown that that opinion was unfounded. 
    9. I am concluding this extremely concise explanation of the most 
general principles of the theory of combinations by a few numerical 
examples. It is common knowledge that the previous Lottery of 
France7 consisted of 90 numbers 5 of which were extracted at each 
drawing. These 90 numbers provided 90 simple extractions, 90·89/1·2, 
90·89·88/3!, 90·89·88·87/4! and 90·89·88·87·86/5! combinations of 2, 
3, 4 and of all 5 numbers.  
    In a drawing of the 5 numbers 5 simple extractions were possible as 
well as 5·4/1·2, 5·4·3/3!, 5·4·3·2/4! and 5!/5! = 1 combinations of 2, 3, 
4 and of all 5 numbers. A gambler playing on 3 numbers had 10 
winning combinations out of 117,480 etc. 
    In the game of piquet the operation called dealing means 
distributing 32 cards in 4 groups, 2 of them of 12 cards given 
respectively to each gambler and 2 other of 5 and 3 cards which 
constitute the talon. The number of combinations taking place is 
32!/12!12!5!3!. Since this number is enormous, when recalling the 
date assigned to the invention of card games, we are assured by a very 
simple calculation how much time is required for the cards in that 
game to be distributed in all possible ways. However, in piquet the 
cards only differing by suit are considered identical so that the number 
of various distributions is considerably less.  
    If among all the combinations we are only interested in those in 
which the 4 aces are in one of the 2 groups of 12 cards, − in that, for 
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example, which is dealt out to the first gambler, − we can find the 
number of such combinations by imagining that the aces are removed 
from the pack and that the remaining 28 cards are distributed in all 
possible ways in 4 groups of 8 (for the first gambler), 12, 5 and 3 
cards. The required number is 28!/8!12!5!3! and its ratio to the number 
calculated above is 9·10·11·12/29·30·31·32 = 99/7192 = 0.01137653 
which is easy to calculate without determining those two enormous 
numbers. 
    10. The examples provided show how rapidly increases the number 
of combinations even when the number of the combined things 
increases inconsiderably. Soon it becomes impossible not only to form 
or examine these combinations one after another, but even to 
accomplish the operations necessary for calculating the number of 
combinations. Imagine an assembly consisting, as our Chamber of 
Deputies now is, of 459 members separated by chance into 9 sections 
with 51 members each.  
    The number of possible distributions will be x = 459!/(51!)9, but the 
calculation of this number by ordinary arithmetic is either impractical 
or excessively long. Tables of logarithms or, better, of sums of 
logarithms were specifically compiled for such aims (Degen 1824). 
We can  therefore determine, at least with 12 decimal points, that lgx = 
428.445 … In our decimal number system x will have 429 digits 
before the decimal point. 
 

Notes 
    1. Bru named the main workers of the German combinatorial school beginning 
with K. F. Hindenburg. 
    2. Arnauld & Nicole (1662, pt. 3, Chapter 19, § 4) and Jakob Bernoulli. B. B. 
    3. Cournot (1847, pp. 13 – 14) repeated this example. B. B. 
    4. In elementary algebraic treatises in which the theory of combinations is only 
taught from the viewpoint of its applications to algebra, it is now usual to call 
arrangements what we denoted as ordered combinations. This term is improper. To 
arrange, in ordinary language signifies putting things in a certain order rather than 
choosing or combining them. Permutation is an operation replacing an arrangement 
by another one with the arranged things remaining the same. A. A. C.  
    5. Unusual term. [B. B.] 
    6. The first traces of the theory of combinations [in the new times] are found in the 
correspondence of Pascal and Fermat and in Pascal’s treatise on the arithmetical 
triangle. We should not forget that Leibniz’ glorious career began in 1666 with his 
thesis on combinations. Traces of his first youthful speculations [on combinations] 
reappear in all parts of the great man’s philosophical system and notably in his views 
about the Caractéristique universelle. A. A. C. 
    The expansion of (a + b)n for natural numbers n was known before Newton, but 
he extended it on the case of negative and fractional values of n (with the number of 
terms becoming infinite). On the arithmetic triangle see Edwards (1987). O. S. 
    7. The Lottery of France existed from 1758 (initially under a different name) to 
1836, but was prohibited from 1793 to 1797. [B. B.] 
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Chapter 2. Chances and Mathematical Probability 
    11. I (§ 2) have indicated that the theory of combinations is mainly 
applied in cases in which a great number of combinations can be 
distributed according to some viewpoint in a small number of 
categories, so that it will only be interesting to know how many 
combinations out of all of them are included in one and another 
category. 
    For example, suppose that a gambler intends to play 30, say, sets of 
a game. The number of hypotheses or combinations taking place in the 
uncertain succession of losses and gains (§ 8) is 230. It is clear, 
however, that after all he is only interested in the number of won or 
lost sets. It follows that he could include in the same category all 
combinations that only differ in the order in which the won and lost 
sets succeed each other. Evidently, in accord with formula (6.1) there 
will only be 31 different hypotheses. It will be otherwise if the sum at 
the gambler’s disposal can be exhausted by consecutive losses making 
it impossible for him to play a fixed number of sets. The order of the 
succession of gains and losses will not be anymore indifferent so that 
the possible combinations should be distributed in a larger number of 
different categories. 
    In general, when having no cause for supposing in advance that one 
of the realizable combinations and hypotheses will appear rather than 
another one, the rules of the so-called games of chance determine a 
certain number of them. Those hypotheses or combinations are called 
chances, and they are naturally distributed in two categories, 
favourable for the gambler and leading to his winning, and 
unfavourable, causing losses. It is clear that he and those who share his 
hopes and fears are interested not in enumerating or examining all the 
possible chances one after another which is almost never practicable, 
but in being able to calculate directly how many chances are 
favourable and contrary. 
    12. It is easy to see that the gambler will know everything important 
for him if only being able to calculate the ratio of the favourable and 
contrary chances or, which comes to the same, of the former to the 
total number of chances. That proportion means that it is indifferent to 
the gambler if the numbers of favourable and contrary chances 
increase or decrease proportionally. This proposition can be regarded 
as one of those fundamental notions which, when being developed, are 
subjected to possible obscurity. Here is a physical model to which we 
may resort following Laplace1 for rendering that proposition more 
obvious. 
    Suppose that an urn contains 20 white and 15 black tickets and that 
another urn has 40 and 30 of those. An extraction of a white and black 
ticket means that a gambler, respectively, wins or looses. We say that 
for the gambler it is indifferent whether the ticket was drawn from the 
first or the second urn. […] We conclude that when considering 
random events2 the interest lies not at all in determining the total 
number of chances or the absolute numbers of favourable and contrary 
chances for the occurrence of such events, but only in finding out the 
ratio of the number of chances favourable for that event to the total 
number of chances, which does not change when those two 
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magnitudes vary proportionally. That ratio should be named so as to 
dispense with the need for incessantly repeating the stated definition, 
and it is called mathematical probability, or simply probability of the 
event. 
    13. The described substitution of calculating the two magnitudes 
constituting a ratio by determining that ratio transforms the theory of 
combinations. It becomes extended which is difficult to overestimate. 
In Chapter 1 we saw how rapidly increase the numbers determined by 
the combinatorial synthesis with the increase in the number of the 
combined elements. These formulas soon lead to impossible 
calculations although the ratio of two incalculable numbers only 
largely depends on the first significant digits of those numbers and can 
still be estimated.  
    For example (§ 9), the total number of combinations taking place 
when dealing out the cards in the game of piquet and of the 
combinations for the 4 aces to be dealt out to a gambler, are enormous 
although can be calculated without too much work. However, their 
exact ratio, 99/192 = 0.0137653 (or the probability that the 4 aces will 
be dealt out to a gambler) can be determined without calculating either 
of these two numbers. Suppose that [by ordinary arithmetic] this is 
impossible and that we calculate these numbers by logarithms arriving 
at 15,928 with 11 zeros and 219, again with 11 zeros. Then the 
probability sought will approximately be 219/15,928 = 0.0137169 
which coincides with its exact value at least to about 1/10,000.  
    The calculus of probability exclusively consists of largely similar 
methods by including mathematical probability into the theory of 
combinations and thus singularly multiplying its applications. 
However, the more complicated become the problems the greater 
insight and knowledge of mathematical analysis they demand. In 
general, the obstacles encountered in the applications of the exact 
sciences are engendered either by the very nature of things which 
make them inaccessible to our calculations, or by the duration and 
complication of calculations which become impractical even when 
understanding their theory. 
    It is mostly the obstacles of the second kind that occur in the 
calculus of probability, and for overcoming the difficulties of work 
analysts have to apply all the opportunities offered by perfecting the 
analysis. The nature of my contribution does not allow me to describe 
their methods, but it is possible to provide at least an idea of their 
goals3.  
    14. Not only the chances or combinations monstrously multiply with 
the number of the combined elements, but the combined things 
themselves and all the more the combinations can become infinite in 
number and indefinite. However, when distributing them in two 
categories, the number of combinations in each is [still] infinite and 
indefinite, but maintains a finite and assignable ratio between them. 
Since a fundamental notion is here discussed, we would like to 
elucidate it by an example and make it quite clear to all our readers. 
    Suppose that a billiard board one meter long is divided into 10 equal 
parts. A billiard ball thrown randomly hits the board at a certain point. 
If that point belongs to part 7, we say that point 7 was hit. Throw the 
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ball twice, then the difference between the hit points can vary from 0 
to 9 inclusive. It is required to determine the probability that it will not 
be less than 3. The number of chances or combinations of possible 
points, when having no reason to suppose one of them to occur rather 
than another, is 102 = 100 with 44 of them providing a difference less 
than 3. The required probability is 0.56.  
    Divide now the same board into 100 parts, and the same probability 
will become 0.497 and 0.4907 when the board is divided into 1000 
parts. Following in the same way, we will find that probability equal to 
0.49007, 0.490007, … We see that it incessantly tends to 0.49 and will 
soon only differ from that value by an extremely small fraction. 
    Now formulate that problem otherwise, without imagining that the 
board is divided into parts. Suppose that we measure the distance of 
each hit point from an end of the board. It is required to determine the 
probability that the difference between two measures thus obtained 
will not be less than 0.3 of the board’s length. It is clear that he 
number of the combined points and, all the more, of the combinations 
or chances, is infinite. Indeed, each throw of the ball can lead to 
infinity of values of those measures. And it is also clear that, when 
successively dividing the board in 10, 100, 1000, … we ever closer 
approach the present case since we neglect centimetres, then 
millimetres, then … 
    Mathematicians know general calculating procedures for 
determining the limits to which certain ratios ever closer approach 
when the terms of those ratios vary by ever smaller degrees4. In the 
presented case, the application of those rules provided 0.49 exactly for 
the required probability  
    15. And so, the calculus of mathematical probability which at first 
presented itself as a branch of syntactics or the theory of combinations, 
became wider than the entire syntactics in the sense that it is applicable 
to cases in which either the formation of the combinations one after 
another, or the calculation of their unbounded number is impracticable. 
    The discussed transformation is of special interest in the real world 
where the number of combinations or chances is usually infinite since 
in nature almost everything varies continuously rather than by leaps. 
Natura non facit saltus (Nature does not leap), as the scholastics of old 
used to state. This saying should not be understood literally, but it is 
true in the sense that for natural phenomena continuity is the rule and 
leaps or discontinuities are exceptions. For combinations engendered 
by human hands the inverse is true.  
    One of the best discoveries made in the exact sciences was the 
determination of methods for passing from discontinuity to continuity. 
This is how geometers pass from considering polygons whose sides 
sharply change their directions to curves. And, not to abandon our 
subject, the ideas of chances and probabilities, formed when 
considering games only offering a finite number of combinations, were 
extended by applying them to cases of nature in which the ratios and 
combinations can vary infinitely. 
    16. For example, if a married couple paid a sum for assuring a 
pension to the surviving spouse, the problem for the insurer was to 
determine the probability that the difference between the lifetimes of 
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husband and wife counted from the beginning of the insurance contract 
did not exceed a determined period. These lifetimes take an infinity of 
various values, so that this problem was similar to that which we 
provided in a purely geometric form but differing from it in one 
essential aspect. We were able to assume there that at each throw of 
the ball the distance of the hit point from the chosen end of the board 
took all values from 0 to 1 m without having a cause to suppose that 
one of those values was preferable to another. Here, we are not 
allowed to adopt the same viewpoint, to regard the realization of all 
the hypotheses about the lifetimes of the spouses as indifferently 
possible.  
    Each of these hypotheses has its own proper probability, its own 
ratio between the chances or combinations leading to its realization 
and the total number of chances. Those ratios vary from one 
hypothesis to another, and the law of that variation should be known in 
advance for solving by calculation the problem about the probability 
interesting for the insurer. The geometric problem of § 14 can be 
modified so that it will be more similar to that of the insurance. 
Suppose that the ball is twice thrown at random on a circular surface 
with radius of 1 m [cf. Poisson (1837, § 102) − B. B.] The distance of 
the hit point to the circumference can take all values from 0 to 1 m, but 
they correspond to the same number of unequally probable hypotheses. 
Indeed, the ball can hit by chance any point of the circle, and when 
considering two portions of the circle having the same area, there will 
be no reason for the ball to hit one of them rather than the other. 
[Cournot derived the probability of the ball hitting a point having a 
given distance from the circumference.] 
    17. We provide one more example of very simple geometric 
conditions of the game of franc-carreau (Buffon 1777, § 23). A floor 
is paved with regular hexagonal tiles and a coin randomly falls on it. 
One gambler bets on the coin to rest completely within a tile, the other 
one, on it to fall on a joint. 
    Choose one of the hexagons and construct another such figure inside 
it with its sides parallel to the corresponding sides of the initial 
hexagon and the distances between such sides equal to the coin’s 
radius. The first gambler obviously wins if the coin’s centre falls 
inside the internal hexagon and loses if it falls between the two figures. 
It is seen that his gain is measured by the ratio of the areas of those 
hexagons. 
    18. We have defined mathematical probability as the ratio of the 
number of chances favourable for an event to the total number of 
chances. That definition presumed that all the chances can be 
enumerated and constitute the same number of discrete unities. For 
modifying that definition and thus rendering it applicable for an 
infinite number of chances with a passage from one chance to another 
performed without discontinuity, the numbers should be replaced by 
continuous magnitudes. Among the concepts of such magnitudes we 
most immediately imagine that of extent. Thus, we can also define 
mathematical probability5 as the ratio of the extent of chances 
favourable for an event to the total extent of chances. However, the 
word extent is only generally used by assimilation although it can also 
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be applied in its proper sense so that probability will be immediately 
determined by the ratio of geometric magnitudes just like in the 
examples above. 
    19. Following the natural inclinations of the human mind, we will 
now pass over from the case in which the chances can be enumerated 
as so many differing hypotheses to that in which the chances constitute 
a continuous whole whereas geometers often move in the opposite 
direction [?]; when an enumeration of chances, although theoretically 
possible, leads to impracticable calculations, they introduce a fictitious 
continuity and this is indeed one of the most fruitful methods of 
approximation for evaluating ratios of large numbers (§ 13). In 
essence, this artifice is the same as invariably practised in most usual 
circumstances. For example, instead of counting grains, they are 
measured by considering them a continuous mass, and the ratio of 
volumes of grain of the same kind should not remarkably differ from 
the ratio of the numbers of grain contained there. 
    20. Here, we provide some frequently applied general principles 
immediately following from the notion of mathematical probability. 
For simplifying the exposition we suppose that there is a finite number 
of chances so that the probabilities will be expressed by 
commensurable fractions and considered as continuous magnitudes. 
    I. The probability of an event which can occur according to various 
unequally probable hypotheses is the sum of the probabilities of each 
hypothesis favourable for that event. 
    To fix this idea by a simplest example, suppose that an urn contains 
N balls, n of them white, n′ red, n″ yellow, and some of other colours. 
The random event is the gain of a gambler occurring if a ball of any of 
those three colours is extracted. The probability of his gain is evidently 
 
    (n + n′ + n″)/N = n/N + n′/N + n″/N. 
 
    21. It is possible to enquire not about the absolute probability of the 
gambler’s gain but about its relative probability that the extracted ball 
was white rather than red or yellow. If a person bets on it, and another 
person bets against it, they will disregard all drawings and chances 
leading to the former’s loss, and the required probability will be n/(n + 
n′ + n″). The absolute probabilities of extracting a white, and a red or 
yellow ball will be 
 
    n/N and (n′ + n″)/N 
 
and therefore 
    II. The relative probability of an event is the quotient of its absolute 
probability divided by the sum of the absolute probabilities of the 
events which are compared with it. 
    22. In the case just above, a compound bet could have been put on 
the gambler’s gain if the colour of the extracted ball was not only one 
of the three mentioned, but white. The probability of that event is 
 
    n/N = [(n + n′ + n″)/N][n/(n + n′ + n″)] 
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and the following rule can be therefore stated: 
    III. The absolute probability of an event composed of two other 
events the second of which can not occur before the first one is the 
product of the absolute probability of the first event multiplied by the 
probability that the second will appear if the first one did, or by the 
relative probability of the second event.  
    The application of this principle often facilitates the calculation of 
probability as seen in this very simple example borrowed from Lacroix. 
    Suppose that we collected in a random order the 13 cards of the 
same suit from a pack of 52 cards. It is required to determine the 
probability that the first two of them are an ace and a deuce. The 
probability of the ace occurring in the first place is 1/13 and 1/12 is the 
probability of the deuce occurring in the second place with the second 
event being subordinated to the first one. The required probability is 
(1/13)(1/12) = 1/156.  
    For solving this problem directly by enumerating the chances we 
remark that the number of the possible arrangements of the 13 cards is 
(§ 4) 13!; after assigning the first two places to the ace and deuce, the 
number of permutations of the 11 other cards is 11! and the required 
probability is 11!/13! = 1/156, just as derived previously without 
needing to know the formula for the number of permutations. 
    23. We have considered a compound event resulting from the 
concurrence of two other events of which the second was subordinated 
to the first. However, a compound event frequently results from the 
concurrence of two or many events independent from one another, 
each having its own proper probability. It is required to determine the 
probability of that compound event. 
    Suppose that we have two urns, one of them with m and m′ white 
and black balls, the other, with n and n′ balls of those colours. It is 
required to determine the probability of extracting two white balls, one 
from each urn. There is evidently as many combinations or equal 
chances as unities in the product obtained by multiplying together the 
total numbers of balls in both urns (§ 2). And there are as many 
combinations or chances favouring the compound event as unities in 
the product obtained by multiplying together the numbers of white 
balls in both urns. The required probability is thus 
 
    mn/[(m + m′)(n + n′)] = [m/(m + m′)][n/(n + n′)]. 
 
    By generalizing this reasoning we may formulate the following rule: 
    IV. The product of the probabilities of many events independent 
from each other is the probability of the compound event resulting 
from their concurrence. Or, more briefly: The probability of a 
compound event is the product of the simple probabilities. 
    Suppose that p and q are the probabilities of two contrary events A 
and B such that one of them necessarily occurs [at each trial]; let also 
A′ and B′ be two other contrary events with probabilities p′ and q′, etc. 
Then 
 
    1 = p + q = p′ + q′ = … 
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The product 
 
    (p + q) (p′ + q′)(p″ + q″) … 
 
being expanded in a series of terms like pp′q″… corresponding to 
compound events AA′B″ … resulting from the concurrence of simple 
events A, A′, B″, … has as many such terms and as many compound 
events as possible combinations from a set of random events (§ 7). The 
sum of all these terms is unity as it should be since one of the possible 
compound events formed from all possible combinations of simple 
events should necessarily occur. 
    If p, q, r are the probabilities of events A, B, C one of which should 
necessarily occur in a random trial, p + q + r = 1. Then the binomial 
factor (p + q) in the product above should be replaced by a trinomial 
factor (p + q + r) etc. 
    24. Here is one more principle, an evident corollary of the precedent. 
    V. The absolute probability of an event having differing 
probabilities according to different hypotheses is the sum of the 
compound probabilities obtained by multiplying the probability of that 
event according to each hypothesis by the probability of that 
hypothesis. 
    And so, suppose that two urns contain m and n white, and m′ and n′ 
black balls. It is required to determine the probability of extracting a 
white ball out of an urn selected by chance. The probability of 
selecting each urn is 1/2, and that of drawing a white ball is  
m/( m + m′) or n/(n + n′), and the required probability is 
 
    1/2[m/( m + m′)] + 1/2[n/( n + n′)]. 
 
The probability of extracting a black ball is 
 
    1/2[m′/( m + m′)] + 1/2[n′/( n + n′)]. 
 
The sum of both probabilities is unity since a ball of either colour will 
necessarily be drawn. 
    It will be a grave mistake to decide that the probability of extracting 
a white ball is the ratio of the total number of white balls in both urns 
to the total number of all the balls there without considering the 
combinations resulting from the distribution of the balls among the 
urns. Suppose for example that the first urn contains 1 white ball and 2 
black balls, and the second urn, respectively, 5 and 3. The number of 
white balls exceeds the number of black balls, and it is possible to 
believe that there are more chances to draw a white ball, or that the 
probability of that event exceeds 1/2. However, according to the 
method of extracting the balls, that probability is by the preceding 
formula 
 
    (1/2)(1/3) + (1/2)(5/8) = 23/48 < 1/2. 
 
    25. One and the same problem about combinations or probabilities 
can be presented in different ways and we should select that which 
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leads to the most elegant or simplest solution. Let us take an example 
which occurs at the yearly military recruitment. Denote by N the 
number of young men entered in a canton’s list, by N′, those who have 
a legal cause for being exempted, and by c, the canton’s contingent. It 
is required to determine the probability that the drawings will reach 
number n, c < n < c + N′.  
    We may suppose that there are (N − N′) white balls and N′ black 
balls and a box with N pigeonholes numbered 1, 2, …, N. The total 
number of permutations obtained by successively occupying each 
pigeonhole with each ball is N!. All the arrangements (S) in which the 
number of black balls contained in the first n pigeonholes is not less 
than (n − c) correspond to chances of the drawings reaching number n. 
Then S/N! is the required probability and the problem is reduced to 
solving a problem in permutations for determining S.  
    But we can also imagine an urn containing (N − N′) white and N′ 
black balls and the required probability will be the same as extracting 
from that urn at least (n – c) white balls in n consecutive drawings 
without replacement. That method of drawing which occurs in many 
other problems has no physical resemblance with the one applied in 
military recruitment. However, the problem stated in that form can be 
easily solved by applying the principle of compound probabilities, as 
we will indicate in the next chapter. 
    26. Sometimes very particular considerations following from the 
physical conditions of a problem can dispense with all enumeration of 
chances and calculations in general. The game of passe-dix offers such 
an example. When tossing 3 dice on a table a gambler bets against his 
adversary on the sum of the appeared points to exceed 10. Among the 
216 possible combinations (§ 6) we should enumerate those providing 
a number larger than 10. It is easy to find formulas which will dispense 
with the need to enumerate the combinations one by one, but it is even 
simpler to benefit from the following remark.  
    On ordinary dice the points are disposed so that their sum on each of 
the two opposite faces is 7: 1 is opposite to 6 etc. And even if the 
manufacturer did not adopt that usage, it is always possible, without 
changing the conditions of randomness, to admit that the points are 
arranged as usual. According to those suppositions, the sum of the 
appeared points together with the opposite points on the faces lying on 
the table is 216. Therefore, to each combination favouring the gambler 
that bet on passe-dix, there corresponds another leading to his loss, − 
the one which can be obtained by turning over the three dice. It is thus 
seen that each gambler has the same number of chances favouring and 
contrary to him so that they can bet even money.  
 

Notes 
    1. See Laplace (1814/1995, p. 4). B. B. 
    2. Concerning that term, Bru refers to Jakob Bernoulli’s Ars Conjectandi, p. 212 
(Chapter 1 of Pt. 4). Bernoulli’s discussion was, however, more philosophical than 
mathematical.  
    3. Suppose that it is required to calculate the product x! by logarithms. If x is a 
large number, and a certain precision is necessary, we should use logarithms 
calculated with many more digits than provided by ordinary tables and their addition 
becomes laborious. Fortunately, this work can be avoided by means of the very 
remarkable Stirling formula which is a particular case of a much more general 
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formula discovered by Euler for transforming sums into integrals and vice versa. The 
Stirling formula is 
 

    
2

1 1
ln ! ln 2π ( 1/2) ln ...

12 360
x x x x

x x
= + + − + − +                        (13.1) 

 
    It was by means of this formula that the tables mentioned in the Note to § 10 were 
compiled. The Stirling formula can be considered typical of those which are applied 
in the theory of probability for numerical calculations. All of them have the singular 
and characteristic property of engendering series whose consecutive terms at first 
decrease very rapidly when the natural number which serves as the variable is only a 
few dozen, but then always take very slowly increasing values. This suffices for 
including them in the class of divergent. The series of that class can nevertheless be 
safely applied for numerical calculations of functions whose expansions they are if 
only we are able to assign a superior limit for the error made when stopping at some 
term. These limiting values are then of the order of magnitudes which we are 
allowed to neglect. Such limits were established for the Stirling formula; in general, 
however, they essentially exceed the involved error and do not therefore provide a 
proper idea of the obtained approximation.  
    They apparently require to take more observations than really needed or to assign 
to x larger values than really sufficient [?]. That grave imperfection is more or less 
characteristic of all similar formulas applied in the theory of probability. It can be 
said that they provide more than they promise in the sense that they ensure a 
sufficient approximation in the cases in which it is not yet possible to prove 
rigorously that the approximation is sufficient. Suppose that x = 10, then x! = 
3,628,800 and lg x = 6.5597630. When only taking into account the term 1/12x that 
logarithm will be 6.5597642 and its error barely exceeds 1/106. 
    Another formula can be derived from (13.1): 
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2

1 1/
! 2π [1 ...].

12 288

xx
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If applying it for calculating 28!12!/[32!8!], the number that expresses the 
probability that in the game of piquet after dealing out the cards a gambler will have 
all four aces, when neglecting the terms 1/12x + … of the series, we will find 
0.013807 with an error of only 1/335 of the true value. When the term 1/12x is 
included, we will have that value 0.0137653 with precision 1/107. A. A. C. 
    De Moivre is known to have also derived the Stirling formula although he did not 
notice that the constant included there was the square root of 2π, see De Moivre 
(1718/1756, p. 244). In that source, his note of 1733 was reprinted on pp. 243 – 254. 
De Moivre also published a table of lg n! for n = 10(10)900 with 14 digits correct to 
11 – 12 digits with a misprint in the fifth digit of lg 380!. Bayes (1764) denied the 
possibility of applying divergent series (of the Stirling formula in the first place) but 
his criticism remained unheeded. Fichtenholz (1947/1951, § 501, p. 820) rigorously 
proved that the Stirling series diverged. O. S.  
    4. The rapprochement of mathematical principles of the calculus of probability 
with those of infinitesimal calculus clearly shows the similarity proper for being 
indicated to a reader familiar with both. Mathematical probability is a ratio between 
two terms which can increase to infinity with that ratio converging to a finite and 
assignable limit. A fluxion, or a derivative, or a differential coefficient (since all 
these terms are identical) is a ratio between two terms decreasing indefinitely with 
that ratio converging to a finite and assignable limit.  
    Considering directly, by reasoning and calculation, mathematical probability 
instead of combinations (that is, the ratio instead of its terms), is the same as instead 
of dealing with infinitesimal magnitudes in Leibniz’ theory, operating directly with 
fluxions or derivatives in the theories of Newton and Lagrange. In both cases we 
introduce an auxiliary symbol and substitute a direct procedure corresponding to the 
nature of things by an artificial method adapted to our intellectual organisation. A. A. 
C.  
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    5. Bru noted that Jakob Bernoulli (Ars Conjectandi, p. 227, this being the end of 
Chapter 4 in Pt. 4) actually discussed the possibility of introducing geometric 
probability and that Buffon (1777, e. g., § 23) forcefully introduced that concept. A 
thought experiment introducing geometric probability was due to Newton, but his 
manuscript of 1664 – 1666 was only published in 1967, see Sheynin (2003, p. 42). 
    6. This is difficult to understand. 
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Chapter 3. Laws of Mathematical Probability of Repeated Events 
    27. The mathematical theory of chances would have only been 
attractive for speculations if restricted to finding out how many 
favourable and contrary chances has an isolated event, repeated either 
not at all, or only under very rare circumstances. 
    We will show, however, that it becomes very important even for 
practical purposes when trials of the same randomness are repeated 
many times under similar circumstances. We can liken all such 
repeated trials to repeated drawings with replacement from an urn 
containing balls of different colours, so that the chances at each 
extraction remain without change. The solution of all possible 
problems concerning repeated trials is implicitly contained in the rule 
derived in § 23 about the principle of compound probabilities. Suppose 
that events A′, A″, … are repetitions of event A, events B′, B″, … 
repetitions of event B, … Then 
 
    p = p′= p″, … q = q′= q″, … 
 
and if there are m trials, the product 
 
    (p + q)(p′ + q′)(p″ + q″) … 
 

becomes (p + q)m. Its general term m n
mC − pnqm−n expresses the 

probability that in m trials the events A and B occur n and (m – n) 
times1.  
    The sum of the terms of that binomial until and including its general 
term expresses the probability that event A arrives at least n times or 
that the contrary event B will not occur more than (m – n) times. It is 
required to determine the probability of obtaining one point at least 
twice in four tosses of a die. We have p = 1/6, q = 5/6, m = 4, and that 
probability is 
 
    p4 + 4p3q + 6p2q2 = 171/1296, 
 
a fraction between 1/7 and 1/8. Then, how many trials are necessary 
for the event A to occur at least once with probability 1/2? Or, which 
is the same, for the event B to occur invariably with the same 
probability? The unknown m should be derived from qm = 1/2. […] 
Suppose that the event A is the arrival of a double-six when tossing 
two dice at once. Then (§ 6) 
 
    p = 1/36, q = 35/36, m = lg 2/(lg 36 – lg 35) = 24.6 … 
 
    It is therefore beneficial to bet on the occurrence of a double-six in 
25 tosses, but disadvantageous to agree on 24 tosses. This is the only 
possibility of interpreting, in this case, the derived incommensurability 
of number m which by its essence should be natural2. 
    28. Each term of the binomial (p + q)m corresponds to a possible 
hypothesis about the ratio of the numbers of events A and B for the 
case of m trials. The sum of all the terms or of all the probabilities 
corresponding to these different hypotheses is unity. And since the 
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number of the terms or the hypotheses is (m + 1), it will not be 
difficult to understand that the absolute [?] values of the different 
terms should become ever smaller as the number of the trials increases. 
However, while decreasing, they maintain certain ratios between them. 
The law of those ratios is now our most important subject. 

    The general term of the binomial, m n
mC − pnqm−n is preceded by term 

1m n
mC − − pn+1qm−n−1 and the ratio of the former to the latter is  

 

    
1n q

m n p

+
⋅

−
.                                                                       (28.1) 

 
If this ratio is larger than unity, or n + 1 > p(m + 1), the former term is 
larger than the latter and vice versa. 
    If p(m + 1) is a natural number, call it k, then there will be number  
n = k in the number sequence 0, 1, …, m, and the term k of the 
binomial corresponding to the event A occurring k times, and B, (m – 
k) times, will be followed by another term of the same value. 
Otherwise, denote by k the largest natural number contained in p(m + 
1), and the term k will be larger than both its preceding and following 
terms, i. e., will be the largest term of the expansion. 
    If pm is a natural number, it will indeed be the largest k contained in 
p(m + 1), and (m – k) will be another natural number equal to qm. And 
the largest term of the expansion will correspond to the combination 
for which the ratio of the numbers of the occurrences of events A and 
B is the same as p/q. In any case, the largest natural number k 
contained in p(m + 1) will differ less than by unity from pm. And if 
neglecting that fraction of unity as compared with numbers pm and qm 
(which is justified when the number m is very large, at least when p or 
q are not extremely small fractions) we may say that in general the 
most probable combination is that for which the number of events A is 
to the number of events B as p/q.  
    It is in addition evident that, if n = pm, m – n = qm, the ratio (28.1) 
becomes 
 

    
1pm q

qm p

+
⋅   

 
and approaches unity the nearer the larger becomes m. And comparing 
the largest term not only with the immediately preceding and 
following terms, but with those situated two, three, four, … places 
further, we become assured in that in both directions from that term 
the decrease becomes ever less rapid as the number m increases.  
    Those terms whose values are the next largest and whose sum 
constitute the greater part of the total sum of all the terms of the 
expansion accumulate in the vicinity of the maximal term.  
    29. For elucidating these notions by an example, I suppose that a 
ball should be extracted at random from an urn containing 2 white 
balls and 1 black ball. Event A will be the arrival of a white ball whose 
probability is 2/3. The contrary event B with probability 1/3 is the 
appearance of the black ball. I denote by (u, v) a compound event, an 
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extraction of u white and v black balls. The following numbers are the 
nominators of the fractions that denote the corresponding probability; 
for 3, 6 and 9 drawings the denominators are 27, 729 and 19,683. 
According to the binomial formula, we will have for those drawings 
 
    (3, 0, 8); (2,1, 12); (1, 2, 6); (0, 3, 1) 
 
    (6, 0, 64); (5, 1, 192); (4, 2, 240); (3,3, 160);  
    (2, 4, 60); (1,5, 12); (0, 6, 1) 
 
    (9, 0, 512); (8, 1, 2304); (7, 2, 4608); (6, 3, 5376); (5, 4, 4032); 
    (4, 5, 2016); (3, 6, 672); (2, 7, 144); (1, 8, 18); (0, 9, 1) 
 
    In these three series of probabilities the largest term corresponds to 
the combination in which the number of white balls exactly twice 
exceeds that of black balls, and the terms decrease in both directions 
from those maximal terms. The ratios of the largest terms to those 
immediately preceding or following them diminish and approach unity 
as the number of terms increases. On the contrary, the ratios of the 
largest to the extreme terms invariably increase since the latter 
decrease very rapidly whereas the largest term decreases as well, but 
much slower. 
    For the last series of 10 different terms or combinations the sum of 
the largest term and the immediately preceding and following terms 
amounts to more than 0.7 of the sum of all the terms taken together. 
And, taking a series of 90 extractions, we conclude by aid of 
logarithmic tables (§ 10) that the sums of the largest term and the two 
terms neighbouring it from both sides are 
 
    (62, 28, 0.081817); (61, 29, 0.087460); (60, 30, 0.088918); 
    (59, 31, 0.086049); (58, 32, 0.079327)  
 
    The sum of those 5 terms is 0.423571, more than 2/5 of the sum of 
all the terms. On the contrary, the numerical values of the extreme 
terms are excessively small; for the term (90, 0) the probability is a 
fraction with 1 in the numerator and a number with 16 digits in the 
denominator. For the term (0, 90) that fraction is even incomparably 
smaller: with the same nominator its denominator is a number with 43 
digits3.  
    30. Bearing in mind that we are dealing with fundamental 
propositions, we now summarize and complete what was said. 
    I. When the arrivals of events A or B depend on a random trial and 
when these trials are repeated many times, the most probable 
distribution is that for which the ratio of the numbers of these events 
[the former ratio] is equal to the ratio of their probabilities [the latter 
ratio] or deviate from it as little as possible. The probabilities of the 
other distributions decrease as the former ratio ever more deviates 
from the latter. 
    II. As the trials multiply, the number of possible distributions 
increases, and the probability of each former ratio lowers the more 
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rapidly the more that ratio deviates from the latter ratio, and vice 
versa. 
    III. Therefore, there exists an ever heightening probability that the 
former ratio will not deviate from the latter ratio beyond certain given 
limits. And, however narrow these limits are chosen, that probability 
can arbitrarily close approach unity, if only the number of the trials is 
sufficiently increased. 
    For these theorems, we are obliged to Jakob Bernoulli who provided 
them in Part 4 of his posthumous Ars Conjectandi of 1713.  
    We should not forget that in these various statements the term 
probability is only understood in its mathematical sense (§ 12). 
Proposition I therefore signifies that, among all the combinations or 
hypotheses which do not take into account the order of the succession 
of the events A and B the number of those indicating that the former 
ratio is equal to the ratio of their chances exceeds the number of the 
others. 
    31. For rendering obvious the law obeyed by the numerical values 
of the different terms of the binomial expansion we can draw a 
segment AB and divide it into m equal intervals. Erect then 
perpendiculars to AB from the (m + 1) obtained points including 
points A and B and mark off distances proportional to the value of the 
first term (m, 0) on perpendicular Aa, the distance proportional to the 
value of the second term (m – 1, 1) on perpendicular A1a1 etc. If m is a 
considerable number, the points of the division of AB will be very 
close to each other, and each perpendicular or ordinate will little differ 
from the neighbouring ordinates. We can join the ends of the ordinates 
by a curve whose course will represent the law which we wished to 
show. That curve has a maximal ordinate Kk. By a generally known 
rule the straight line touching the curve at point k is parallel to AB. 
Finally, according to another rule of geometry the area [under a 
portion of the curve] is approximately equal to the product of one 
interval of AB by the sum of the included ordinates plus half the sum 
of the extreme ordinates.  
    Suppose for the sake of greater simplicity that p is commensurable 
and that the given value of m renders pm a natural number. If m 
increases but invariably obeys that condition, and if the same 
construction is repeated, we will obtain another curve whose maximal 
ordinate Kk will begin at the same point K, but in virtue of law II, the 
ordinates which delimited a portion of the initial curve and have their 
bases in their former places will shorten more rapidly than Kk and the 
partial area [under the curve] will constitute a larger portion of the 
whole area. And, by law III, we can sufficiently increase m for that 
portion to differ arbitrarily little from the whole area. 
    32. When m becomes very large, a direct calculation of a sum of a 
large number of terms of the binomial expansion will be impractical. 
We turn to formulas of approximation whose use exactly corresponds 
to constructing a curve as above through the ends of the ordinates and 
substituting by the mentioned rule the calculation of a portion of the 
curve’s area by summing the corresponding ordinates. Among 
formulas or functions analysts select for this goal those which can be 
written algebraically whose expressions are not too complicated and 
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whose courses best accord with that of the curve described above. The 
same method is applied in a similar case for passing from a real 
discontinuity to a fictitious continuity (§ 19). 
    33. Denote by P the probability that the number of events A in m 
trials is contained within m(p – l) and m(p + l) or that the ratio w of 
that number to the total number of the events will be contained within 
(p – l) and (p + l). According to formulas of approximation, for large 
values of m the value of P only depends on 
 

    / 2 (1 )t l m p p= −                                                              (33.1)  

 
so that, if t does not change (but l, m and p can change) the probability 
P will not vary either.  
    As the algebraists say, P is a function of abstract number t. Now, t 
varies proportionally to l which is the limit of the difference between p 
and w, proportionally to the square root of the number m of trials and 
inversely proportional to the square root of p(1 – p). Therefore, 
    [1] After assigning certain values to l and m and calculating P, we 
will successively try out values of l equal to 1/2, 1/3, 1/4, 1/10 of its 
initial value. The number of trials should be increased 4, 9, 16, 100 
times for obtaining the same probability that the random deviation  
± (p – w) is contained within these new limits. In other words, to 
obtain the same probability that the anomalies of randomness 
concerning the determination of w are contained in ever narrower 
limits it is necessary to increase the number of trials inversely 
proportionally to the squares of these limits. 
    [2] For values of p very little differing from 0 and 1 the product  
p(1 – p) is very small. It attains its largest value at p = 1/2. Therefore, 
the more different are the probabilities of A and the contrary event, the 
less is the need to multiply the trials for obtaining the same probability 
P that the random deviation ± (p – w) will be contained within the 
same limits; or, the narrower they become if the probability and the 
number of trials are the same. 
    These rules are derived by approximate calculations and are 
themselves only approximately exact. However, the approximation 
that they provide is quite sufficient when m is of the order of hundreds; 
still better, of thousands, tens of thousands, … Such numbers rarely 
occur in random trials taking place in agreements between individuals, 
but they are usual in physical and social phenomena for which the 
theory mainly ought to be established4.  
    34. After assigning the numbers p, m, l the magnitude t is 
determined and it is necessary to calculate the corresponding value of 
P by approximate formulas whose origin we have only indicated. Or, 
which is much better, it is necessary to calculate once and for all a 
table of the values of P corresponding to a series of values of t 
sufficiently close to each other. Those alien to higher mathematics can 
apply that table without knowing the theory of its compilation just the 
same as we invariably use the tables of logarithms and sines without 
knowing either the theory of these magnitudes or the methods of 
compiling these tables.  
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    At the end of this book I provide a table calculated for values of t 
from 0 to 3 increasing by hundredths. It will be barely useful to 
continue that table further since for t = 3 P is already 0.999978 so that 
the probability (1 – P) of a deviation larger than the l corresponding to 
t = 3 becomes an extremely small fraction 0.000022 which is lower 
than the probability of randomly extracting the single black ball from 
an urn containing 45,000 balls of other colours.  
    The Table indicated that the value P = 1/2 corresponds to the value 
of t between 0.47 and 0.48 and calculation provides 0.476937. We will 
call the value of l which, for given magnitudes m and p, leads to that 
value of t and to P = 1/2, the median value. Then there will be as many 
chances for ± (p – w), or to the numerical value of the deviation, to be 
contained within or beyond that value. In that case and in similar cases 
authors have applied the expression probable value which is not at all 
proper. On the one hand, all possible values of a deviation have their 
own chances or probabilities, and, on the other hand, the law of their 
probabilities (§ 16) is such that as the numerical value assigned to the 
deviation decreases its probability heightens, and the value of the 
deviation which we called median is actually less probable than any 
other of its smaller values. 
    Already at t = 2 we have such a value of l that the probability of a 
larger deviation is 0.00468 or lower than the probability of extracting 
by chance a black ball from an urn having only one such ball out of 
212. Finally, if t = 2.87, the probability (1 – P) becomes equal to that 
of a drawing by chance of the only black ball out of 20,000. This value 
of t is remarkable in that it is approximately 6 times larger than the 
value providing P = 1/2. And, since for constant values of m and p, t 
and l increase in the same proportion, it is easy to remember that the 
median value of a deviation is 1/6 of the value that can be selected as 
that limit beyond which a deviation will have probability not higher 
than 1/20,000. 
    35. Suppose, just like in § 29, that an event A consists in drawing a 
white ball from an urn containing 2 white balls and 1 black ball. For a 
series of 9000 trials the median value of the deviation is 0.003348. 
There is probability 1/2 that the number of events A will be between 
5970 and 6030; probability 211/212 for these limits to be 5874 and 
6126; and an extremely high probability of 19,999/20,000 that they 
will be 5819 and 6181.  
    Suppose now that there are 9 million trials. Then the median value 
of the deviation will be about 32 times smaller. The limits 
corresponding to the same probabilities as above will be 5,999,047 and 
6,000,953; 5,996,000 and 6,004,000; 5,994,260 and 6,005,740. 
    36. We (§ 28) have considered all the repetitions of the same 
random trials consisting of drawings with replacement so that the 
random conditions of the successive extractions did not change. 
Drawings without replacement are also important, − less important but, 
because of similarity, proper to be treated here briefly. 
    Suppose we have a white and b black balls in an urn from which 
balls are extracted one by one without replacement. It is required to 
determine the probability of drawing n white and (m – n) black balls in 
m extractions, We continue to denote by A a simple event consisting 
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of drawing a white ball, and by B, a contrary event of extracting a 
black ball. Then AB will indicate a compound event consisting of an 
arrival of a white ball followed by a black ball etc. It is obvious that, 
according to the principle of compound probabilities (§ 23), such a 
compound event as AAB will have probability 
 

    
1 ( 1)

1 2 ( )( 1)( 2)

a a b a a b

a b a b a b a b a b a b

− −
⋅ ⋅ =

+ + − + − + + − + −
,  

 
whereas the compound event ABA, which only differs from the 
previous by the order of the succession of the simple events, has 
probability only differing from the previous expression by the order of 
the numerator’s factors. 
    The generality of this remark is evident, so that the required 
probability is 
 

    
( 1)...( 1) ( 1)...[ ( ) 1]

( )( 1)...( 1)

a a a n b b b m n

a b a b a b m

− − + − − − +

+ + − + − +
  

 
taken as many times as there are permutations in the order of the 
events (§ 5). So that probability is 
 

    m n
mC − ( 1)...( 1) ( 1)...[ ( ) 1]

( )( 1)...( 1)

a a a n b b b m n

a b a b a b m

− − + − − − +

+ + − + − +
.      (36.1) 

 
    If consecutively n = 1, 2, … (m – 1), we will have the probabilities 
of the arrival of 1, 2, …, (m – 1) white, and (m – 1), (m – 2), …, 1 
black balls in m drawings. The probability of only extracting white 
balls is 
 

    
( 1)...( 1)

.
( )( 1)...( 1)

a a a m

a b a b a b m

− − +

+ + − + − +
 

 
    The sum of all the probabilities is unity since it corresponds to the 
same number of hypotheses one of which ought to occur. Therefore,  
 

    
( 1)...( 1)

1
( )( 1)...( 1)

a a a m

a b a b a b m

− − +
= +

+ + − + − +
 

 

    1 ( 1)( 2)...( 2)
...

( )( 1)...( 1)m

a a a a m b
C

a b a b a b m

− − − +
+

+ + − + − +
 + 

 

    
( 1)...( 1) ( 1)...[ ( ) 1]

...
( )( 1)...( 1)

m n
m

a a a n b b b m n
C

a b a b a b m
− − − + − − − +

+
+ + − + − +

 + 

 

    
( 1)...( 1]

( )( 1)...( 1)

b b b m

a b a b a b m

− − +

+ + − + − +
.                                (36.2) 
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    The denominator of the last fraction is 
 

    a(a – 1) … (a – m + 1) + 1
mC  a(a – 1) … (a – m + 2)b + … + 

    m n
mC − a(a – 1)… (a – n + 1)b(b – 1) … [b − (m – n) + 1] + … +  

    b(b – 1) … (b – m + 1).                                             (36.3) 
 
    This last formula is remarkable for its similarity with the binomial 
expansion with multipliers replacing powers of the latter. This analogy 
already sensed (§ 6) is justified by the very principles of combinatorial 
synthesis. That formula also expresses an algebraic relation which 
should persist whichever are the numerical values of a, b, m with a + b 
> m and therefore even if those letters do not anymore denote natural 
numbers. It can also be proved by pure algebra, but we saw how easy 
it followed when considering compound probabilities. Thus, for 
example, by artificially introducing an alien element it is sometimes 
possible to simplify a successive course of certain abstract truths and, 
for example, by considerations borrowed from mechanics simpler 
prove certain propositions of pure geometry. 
    When summing (m – n + 1) first terms of (36.2) until term (36.1) 
inclusive, we will obtain the probability that not less than n white balls 
are extracted in m drawings. The term (36.1) is the largest in the 
expansion (36.2) since n/(m – n) and therefore (a – n)/(b – m + n) are 
equal to a/b or differ from it as little as possible. The terms of the 
expansion (36.2) decrease on each side of the largest term following 
laws similar to those considered in § 28 and the next sections. 
    Instead of extracting m balls one by one, it is evidently possible to 
draw all of them at once without changing the probability of obtaining 
n white and (m – n) black balls. 
    37. We (§ 25) have indicated an application of a problem treated in 
§ 36. It can be most immediately made use of in many problems about 
trials of sorts taking place in political assemblies whose members are 
usually separated in two parties, or thought to belong to two large 
factions. For example, an assembly has 459 members (§ 10) of which 
240 belong to the majority, and 219, to the minority factions. Suppose 
that a deputation or commission of 20 is elected by chance. What will 
be the probability that the majority or the minority of the assembly will 
compose the majority or the minority of the commission?  
    If because of random causes such as illnesses acting independently 
from the parties, 30 members are absent at the voting, we can require 
the probability that the majority of the assembly will constitute a 
minority in the commission. That question is the same as asking for 
the probability that in 30 drawings by chance at least 26 white balls 
will be drawn from an urn containing 240 white and 219 black balls. 
Our formulas applied with the aid of logarithmic tables provide for this 
probability the value 0.000049547 ≈ 1/20,000. 
    The right to challenge peremptorily a certain number of judges or 
jurymen suggests similar problems. For example, out of 36 jurymen 
the accused and the public prosecutor have the right to challenge 12 of 
them respectively. The challenge is made by extracting the names of 
the jurymen from an urn in which 12 names should remain. For 
considering the simplest case, I suppose that the prosecutor has no 



 40 

reason to use his right of challenging, and that the accused wishes to 
reject 6 jurymen. It is required to determine the probability that the 
accused will not benefit from his right. The problem is tantamount to 
determining the probability that in 12 drawings only white balls will 
be extracted from an urn containing 30 white and 6 black balls. That 
probability is 0.069102 ≈ 7/1005.  
 

Notes 
    1. The meaning of p and q is obvious. 
    2. The problem concerning the abovementioned trictrac is famous since it became 
the occasion [?] of Pascal’s first researches [in probability] and thus originated the 
calculus of probability. The correspondence of this great man tells us that the 
pertinent question was posed by a man about town Chevalier De Méré, who was 
remote from mathematics. Because of this fortunate circumstance, his name is since 
belonging to the history of science. A. A. C. 
    3. Suppose that p = q = 1/2 and m = 100. The terms equally remote from the 
middle term are equal to each other, and calculations provide [Cournot lists their 
values with 7 decimals for (50, 50) − (75, 25) and continues:] 
    The 50 terms situated furthest from the same middle term can evidently be 
considered absolutely negligible. Each of the values of the two extreme terms is 2−300 
which is a fraction with numerator 1 and denominator, a number with 31 digits. The 
sum of the seven middle terms (53, 47) − (47, 53) is 0.5158814, larger than a half of 
the sum of all the 101 terms of the expansion. A. A. C. 
    4. In mathematical treatises it is shown that, neglecting magnitudes of the order of 
1/m, 
 

    

2
2

0

2 exp( )
exp( ) .

π 2π (1 )
                    

t t
P t dt

p p m

−
= − +∫

−                   (33.2) 

For the sake of greater simplicity we suppose that, throughout this book, the value of 
P is only represented by the first term of (33.2). The same holds concerning similar 
expressions which we invariably apply. That simplification is all the more allowed 
since ordinarily it is much less required to calculate with a close approximation the 
value of P rather than to assign to that fraction an inferior limit. The second term of 
(33.2) is positive so that, when neglecting it and finding out that the probability  
(1 – P) is less than some number, the consequences of that fact will all the more 
persist if P is corrected by that term.  
    Function exp (−x2) should be considered as the algebraic type of functions [!] 
which very rapidly decrease symmetrically on both sides of the origin of the variable 
t. Its numerical value never exactly disappearing is excessively small for quite small 
values of t. It is for this reason [?] that that function is included in all formulas 
constructed by analysts for applying them in the theory of chances. Because of that 
property of exp (− x2) the curve passing through the ends of a large number of 
ordinates representing the consecutive terms of the expansion of the binomial  
(p + q)m can almost exactly coincide, especially near point k, with the curve whose 
ordinates are those of (p + q)m and abscissas measured along AB with origin at K. 
[…] Denoting by a and b the abscissas KA and KB we will have approximately by 
the known theorem of geometry and integral calculus 
 

    
2 2

 exp( ) exp( ) .
t b

t a

P t dt t dt= − ÷ −∫ ∫
−

  

 
    However, owing to the smallness of the ordinates Aa and Bb and the extreme 
rapidity with which the function exp (− x2) decreases at larger numerical values of t, 
the integral in the denominator can be extended over [−∞, ∞] and therefore 
becoming equal to √π, so that this P becomes equal to the first term of the formula 
(33.2).  
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    Denote by k the largest natural number contained in p(m + 1) and let numbers l 

and t increase by steps with 1)(l m m + remaining a natural number, call it λ. The 

second term in (33.2) expresses the probability that the number n of events A is 
exactly equal to (k − λ) or (k + λ). When the second term is subtracted from the first 
instead of being added to it we will get the probability that n is contained between  
(k − λ) and (k + λ) but dose not reach these limits. The first term of (33.2) expresses 
the probability that n is contained within (k − λ) and (k + λ + 1) or (k − λ − 1) and  
(k + λ). Finally, the complete value of P is the probability that n is contained within 
(k − λ − 1) and (k + λ + 1). The role of the second term and of the error made when 
neglecting it is thus better understood.  
    Although formula (33.2) is only considered exact to within magnitudes of the 
order of 1/m, it usually provides a much better approximation. Suppose that p = 1/2 
and m = 100. According to the formula, the probability that the number n of events 
exceeds 39 but is less than 61 is 0.9653 whereas our calculation (Note 3) provides 
0.9648, so that the error of the formula is only 0.0005 instead of one or a few 
hundredths as could have been feared when keeping to the exact terms of the 
ordinary demonstration. A. A. C. 
    Formula (33.2) is due to Laplace (1812/1886, p. 284) who had thus developed de 
Moivre’s formula of 1733. It also occurs in Poisson (1837, § 79). On the role of the 
second term of formula (33.2), see Poisson (1837, § 79). B. B. See also Note 6 to 
Chapter 1.  
    5. This reasoning is incomplete: the accused would have probably been glad if 
even less than 6 undesirable jurymen were challenged. 
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Chapter 4. Randomness. Physical Possibility and Impossibility 
    38. Until now, we had in a certain sense discussed pure arithmetic. 
We enumerated combinations; asked for the ratios between the 
numbers that express how many combinations lead to some result and 
how many are contrary to it; assigned the limits of those ratios when 
the pertinent numbers increased to infinity because of passing from 
discontinuity to the continuous; examined how the values of those 
ratios for compound events depended on the values calculated for the 
simple events.  
    Now, however, we aim to find out whether all that theory is only a 
jeu d’esprit, a curious speculation, or, on the contrary, it strives to 
discover very important and very general laws which govern the real 
world. For passing from the idea of an abstract ratio to the notion of an 
efficient law of realities and phenomena, mathematical reasoning 
based on a series of identities is obviously insufficient. We should turn 
to other notions, to other principles of knowledge. In a word, we 
should apply philosophical criticism. We direct complete attention of 
readers to this delicate point. Although this subject had been, in our 
opinion, imperfectly understood or described by philosophers both 
being geometers1 or not, we do not despair of making that subject 
sufficiently clear for preventing any ambiguity or mistakes in its future 
applications. 
    39. No phenomenon or event is produced without a cause. This is a 
supreme principle and regulator of the human mind when facts of 
reality are investigated. The cause of a phenomenon often eludes us or 
we assume as a cause something which it is not. However, neither our 
helplessness in applying the principle of causality nor the mistakes 
made while applying it can shake our attachment to this principle 
understood as an absolute and necessary rule. 
    We move from an effect to its immediate cause. In turn, that cause 
is considered as an effect, etc, without at all understanding any limits 
of this law of regression. In turn, the actual effect becomes or can 
become a cause of a subsequent effect, and thus it can continue to 
infinity. That infinite chain of causes and effects exists in time2. Actual 
phenomena form its links and constitute a linear series (§ 4). An 
infinity of such series can coexist in time, they can intersect when a 
phenomenon, engendered by many conducive phenomena, is an effect 
of many different series of generating causes or in turn engenders 
many series of effects which remain different and perfectly separated 
beyond the initial term.  
    A simple idea of such intersections and such isolation is formed by 
comparing that with human generations. Through his parents a man is 
connected with two series of ancestors. And, while ascending, both 
these series fork with each generation. In turn, the man can originate 
and be the common ancestor of many descending lines, which, after 
issuing from him, do not intersect or only intersect accidentally by 
marriages within the family. After some time, each family or each 
genealogic branch contracts marriages with many others, but these 
other branches much oftener propagate collaterally and remain 
perfectly distinct and isolated from each other. Or, if they have a 



 43 

common origin, its genuineness is not justified by science or historical 
research. 
    In the ascending order, each human generation only provides a 
division by pairs. However, we can imagine a possible existence of a 
much larger number of divisions in both temporal directions when 
some causes and effects are considered. Some phenomenon can be 
imagined as being conditioned by a multitude of different causes. 
Passing in most cases from discontinuity to continuity and thus leading 
us to believe in the infinity the number of conducive causes to infinity 
even appears to conform to the general plan of nature (§ 15). Therefore, 
the branches of intersecting lines which in our imagination represent 
the causal connection of phenomena similar to a pencil of rays, widen, 
and concentrate without tearing their tissues.  
    40. However, whether we consider the number of generating causes 
of some phenomenon finite or infinite, according to the principle of 
common sense there will be series of solidary phenomena depending 
on each other and other series which develop on parallel or 
successively without any dependence, any solidarity. Actually, some 
philosophers3 imagined that everything in the whole world is 
connected and proved it by subtle arguments or ingenious trifles. 
However, neither their subtleties, nor their nothings can prevail over 
beliefs of common sense. No one can seriously think that kicking the 
Earth will hamper a navigator sailing somewhere at the antipodes or 
stir the system of Jupiter’s satellites. When wishing to admit 
theoretically the existence of disturbances of that kind caused by such 
causes, it will be necessary to recognize that these perturbations are 
imperceptible so that we have no means for finding their traces in 
phenomena. In other words, the alleged solidarity does not manifest 
itself by any sensible sign as though among observable facts it does 
not exist. 
    Events causally produced by combinations or encounters of 
phenomena belonging to independent series4, are those which we call 
fortuitous or resulting from randomness. 
    41. We elucidate that statement by examples. I suppose that brothers 
serving in the same corps perished in the same battle5. There is 
something startling us in the common misfortune, but, after 
deliberating we see that these two circumstances can be not 
independent one from another and that randomness alone did not lead 
to that pernicious rapprochement. Perhaps the younger brother decided 
on the military career following his elder brother; and it is therefore 
natural for them to try serving in the same corps. They are thus 
exposed to the same danger, feel it necessary to help each other and, if 
in great danger, both could have succumbed which would not be 
surprising.  
    Causes independent from their ties of relationship could have played 
a role in that event, but the coincidence of their being brothers and 
their common fate was not due to pure chance. Now I suppose that 
they served in different armies, one on the northern frontier and the 
other, at the foot of the Alps. Battles occurred on the same day in both 
places and the brothers perished. We are justified to consider this 
coincidence as a result of chance. 
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    At a great distance apart the operations of the two armies consisted 
of two series of facts. General orders could have been issued from a 
common centre but later developments were perfectly independent 
from each other and accommodated local circumstances. Those 
leading to the battle on some day and at some place in the first army 
had no connection with the circumstances which, on the same day, 
brought about the battle in the second. And if those corps to which the 
brothers belonged participated in both battles respectively, if the fights 
were desperate and both brothers succumbed, there will be nothing in 
their blood relation which justifies that coincidence.  
    A man surprised by a storm took refuge under an isolated tree and 
was killed by a lightning. That accident is not purely random. Physics 
tells us that electric fluids tend to discharge on treetops and any spikes. 
And it stands to reason that a man ignorant of physical principles 
chose a tree as a refuge and it is also justifiable that a lightning struck 
exactly that place. On the contrary, if a man is killed in the steppe or 
forest, that accident would have been fortuitous since there is no 
connection between the causes that brought the man to that point and 
the reason for the lightning to strike him at that moment. 
    A man who can not read extracts letters one after another from 
disordered type of a printing house, and they form the word Alexander. 
That is an accidental fact or the result of randomness since there is no 
connection at all between the causes that direct the man’s hand and 
those that impose the name Alexander of the famous conqueror which 
was later attributed to other historical personalities so that that name 
became popular and one of the best known in the language. 
    42. Such events are rare and surprising but that is not at all the 
reason for choosing them as examples of the result of randomness. On 
the contrary (as we will explain and as it was possible to foresee by 
what was said in the preceding chapter), it is because randomness 
engendered them rather than many others caused by other 
combinations that they are rare. And since they are rare, they amaze us. 
There is nothing rare or surprising for a blindfolded man to extract a 
white or a black ball from an urn containing the same number of balls 
of both colours. And nevertheless either event will be justifiably 
considered a result of randomness since there is manifestly no 
connection between the causes for some ball to be taken by the man’s 
hand and its colour. 
    It is quite true that in ordinary language we voluntarily apply the 
expression randomness when discussing rare and surprising 
combinations. Four uninterrupted extractions of a black ball from an 
urn containing the same number of white and black balls is thought to 
be an effect of a rare chance. The same will perhaps not be said if 2 
white balls were followed by 2 black balls, and all the less said if the 4 
balls followed each other less regularly. Nevertheless, the causes 
directing the operator’s hand and those determining the colour of the 
balls are perfectly independent.  
    It was remarked that the death of both brothers on the same day was 
due to chance, but it would not have been indicated, or remarked less 
had they died a month, or three or six months apart. Still, in any of 
these cases there is no solidarity between the causes leading to the 
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death of the elder brother on a certain day and those that brought about 
the death of the younger brother on some other, or those that made 
them brothers. When a blindfolded man extracts disordered letters, no 
attention would have been paid to their sets which do not represent any 
articulate sounds or words used in a known language. Nevertheless, 
there is never any connection between the causes that successively 
direct the operator’s hand on a certain piece of metal and those which 
stamped certain letters on these pieces. 
    However, that nuance of the expression attached to the word 
randomness in usual conversation and the language of the town is 
vague and barely defined and it ought to be removed from the exact 
language of science and philosophy. To understand the notion of 
randomness well enough, we should only attach to it the fundamental 
and categorical; that is, the idea of independence or absence of 
solidarity between different series of facts or causes. 
    43. Another notion connected with randomness with very important 
consequences for theory and practice, is physical impossibility. It is 
now appropriate to turn to examples for facilitating the understanding 
of these abstract generalities. 
    We consider it physically impossible that a material cone remains in 
equilibrium on its apex; that an impulsion communicated to a sphere is 
exactly directed along a straight line passing through its centre and 
therefore does not lead to any rotation; that the centre of a disc falling 
on a floor covered with square tiles lands on the intersection of the 
diagonals of a tile; that an angle-measuring instrument is exactly 
centred; that a balance is rigorously exact; that a certain measure 
rigorously conforms to the standard, etc. 
    All these physical impossibilities are of the same nature and are 
evidently connected with the notion of chance encounters or 
independence of causes as described above. Suppose that it is required 
to find the centre of a circle. The ability of the performer and the 
precision of his instruments assign the limits of the possible error or 
the distance between the veritable centre and the determined point he 
indicates as the centre. On the other hand, within certain limits 
differing from the former and separated by a shorter interval the 
performer is not anymore guided by his senses or instruments.  
    The central point in a more or less small area is undoubtedly 
determined by some causes, but blind causes independent from 
geometric conditions which determine the veritable centre. There 
exists an infinity of points on which the blind causes can fix the 
performer’s instrument with no reason occasioned by the nature of the 
task for choosing one point rather than another. The coincidence of the 
chosen point and the veritable centre is an event completely similar to 
blindly drawing a white ball from an urn containing a single white ball 
and infinitely many black balls. 
    A physically impossible event is therefore such whose mathematical 
probability is infinitely low. That sole remark provides thoroughness 
and an exceptional objective value for the theory of mathematical 
probability.  
    Just the same, if a sphere collides with a body moving in space, 
because of causes independent from the presence of that sphere in a 
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certain place it is physically impossible, and it never happens, that 
among the infinitely many possible directions of that body the causes 
of its motion lead to its exactly passing through the centre of the 
sphere. We therefore admit the physical impossibility of the sphere not 
to begin rotating in addition to translating. If the impulsion is 
communicated by an intelligent being with a restricted sense of 
perfection who aimed at that result it would have still been physically 
impossible to achieve it. […] In the same way we can explain the 
physical impossibility admitted by the whole world of retaining a cone 
in equilibrium on its apex. Similar reasoning holds for all the described 
cases.  
    The notion of physical impossibility doubtless essentially differs 
from mathematical or metaphysical impossibility, but we are unable to 
establish the transition from one to another. A physically impossible 
thing is understood as mathematically or metaphysically possible 
although never happening. There is no reason for the only combination 
of facts or independent causes which can lead to it, to be present in 
preference to infinitely many others. That general and abstract notion 
of independence of causes and the infinite multitude of possible 
combinations provides a foundation of physical impossibility without 
turning to empirical notions about the material world conveyed to us 
by our senses. For this reason it is perhaps better to call physical 
impossibility actual impossibility opposing it to mathematical or 
metaphysical impossibility, apparently more properly called rational 
or absolute impossibility.  
    44. An actually or physically impossible event is that whose 
mathematical probability is infinitely low. It can be likened to a blind 
extraction of a single white ball from an urn also containing infinitely 
many black balls. However, having any finite ratio of white to black 
balls, when repeating ever more trial drawings we will obtain, 
according to the Bernoulli theorems [?], a heightening probability that 
the ratio of the extracted white to black balls ever less deviates from 
the ratio of their mathematical probabilities. For an infinity of 
extractions we will get an infinitely low probability or a physical 
impossibility of those ratios to differ by a given and arbitrarily small 
fraction. And, assigning a sufficiently large number of trials and 
convenient limits of that deviation, the entire doctrine of mathematical 
probabilities will be attached to the notion of physical impossibility.  
    Mathematical probability will not be anymore a simple abstract ratio 
caused by our mind but the expression of the ratio maintained by the 
nature itself of the things established by observation when, under the 
influence of independent accidentally combining causes, the trials of 
the same randomness indefinitely multiply as it occurs all the time in 
natural phenomena and social facts. 
    In the strict language proper for abstract and absolute truths in 
mathematics and metaphysics a thing is possible or not; there are no 
degrees of possibility or impossibility. However, in the world of facts 
and realities, when two contrary phenomena can be and are realized 
according to random combinations of certain variable causes and other 
causes or constants, it is natural to regard a phenomenon as endowed 
with the greater ability to occur, or to occur with the greater physical 
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or absolute possibility the oftener they are reproduced in a large 
number of trials. Mathematical probability then becomes the measure 
of physical possibility so that these expressions are interchangeable. 
This, after all, is only a definition of terms. The advantage of the term 
possibility (usage has already recognized the truth of what we 
describe) is that it clearly denotes the experience of a ratio which 
exists between the things themselves and does not depend on our 
manner of judging or sensing varying from one individual to another 
according to their circumstances and the degree of their knowledge.  
    Finally to apply the technical language of learning, the term 
possibility expresses an objective sense whereas probability ordinarily 
implies a subjective sense6 and therefore deceived excellent minds, 
caused so many misunderstandings and corrupted ideas which should 
be formed about the theory of chances and mathematical probabilities. 
    45. Thus, often repeated is Hume’s conception that Properly 
speaking, there is nothing random but there is something equivalent to 
it: our ignorance of the real causes of events. Laplace himself 
(1814/1995, p. 3) formulated the following principle: Probability is 
relative in part to our ignorance and in part to our knowledge. It 
follows that for a superior intelligence which would have discerned all 
the causes and the resulting effects7 the science of probabilities 
disappears owing to the absence of a subject.  
    All these reflections are however wrong. Undoubtedly, the word 
randomness indicates an idea rather than a substantial cause, an idea of 
combinations of systems of causes or facts, each of them developing in 
its own series, independently one from another. A superior mind only 
differs from the human mind in that it is less often wrong, or never 
wrong. It will not risk considering series causally influencing each 
other as independent entities, or, inversely, imagine actually 
independent causes as depending on each other. A superior mind 
would have more surely or even quite exactly separated the part of 
randomness in the development of successive phenomena. It would 
have assigned in advance the results of the coincidence of independent 
causes which we most often are unable to do. 
    For example, an irregular die should be tossed a large number of 
times. At each toss causes, independent from those acting in the 
following trials, determine the intensity, direction and point of 
application of the impulsive forces. Then that mind, unlike ours, would 
have almost exactly known the ratio of the number of tosses leading to 
a determined outcome to the total number of them. And that 
knowledge would have been certain, whether or not the superior mind 
knew the acting forces, and was able to calculate the effects of each 
toss.  
    In a word, it advances further than we do and better applies the 
knowledge of those mathematical ratios which are connected with the 
notion of randomness and became the laws of nature in the world of 
phenomena. In this sense it is correctly stated (and very often repeated) 
that randomness governs the world or rather that it has its role, and a 
notable role at that, in governing the world. 
    This does not at all contradict the idea which we should form about 
the supreme and providential direction8. It either takes care of only 
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mean and general results9 ensured by the laws themselves of 
randomness, or the supreme cause disposes the details and particular 
facts for coordinating them with aims surpassing our sciences and 
theories. When remaining in the world of secondary causes and natural 
facts, which are the proper field of science, the mathematical theory of 
randomness appears as a widest application of the quantitative science 
and justifies in the best way the saying Mundum regunt numeri (The 
world is governed by numbers). Actually, in spite of the thoughts of 
some philosophers10, nothing authorises us to believe that the 
foundation of all phenomena is found in the notions of extension, time, 
movement, and, in a word, in the notions of continuous and 
measurable magnitudes, the object of geometry.  
    At the level of our knowledge, the acts of intelligent and spiritual 
living beings can not be explained at all and we can fearlessly state 
that they will never be explained by mechanics [?] of the geometers. 
They do not at all find themselves on the side of geometry or 
mechanics, in the numerical domain. However, they are led there since 
the notions of combinations and chance, cause and randomness are 
higher in the abstract world than geometry and mechanics and 
applicable to the facts of living nature11, to the intellectual and moral 
field just as the phenomena produced by the movement of inert matter.  
    46. In essence, the theory of chances and mathematical probabilities 
is applicable to two clearly distinct fields: to problems of possibility 
which objectively exist, as we have explained, and of probability 
which are actually relative in part to our knowledge and in part to our 
ignorance12. When we say that the probability of achieving a double-
six in trictrac is 1/36 (§ 6), we can think about possibilities so that it 
means that, had the dice been perfectly regular and homogeneous 
cubes, there would have been no reason caused by their physical 
structure for one face to appear rather than another one. It then follows 
that a double-six will arrive in approximately 1/36 of the total number 
of tosses because the directions of the impulsive forces are absolutely 
independent from the numbers stamped on the faces of the dice.  
    However, we can also think about simple probability. Without 
enquiring whether that regularity of structure exists or not, it suffices 
that we do not know how its irregularities act if they exist. We will 
then have no reason to suppose that one face arrives rather than 
another one and the occurrence of a double-six for which there is only 
one combination out of 36 is for us less probable than the arrival of 2 
and 1 favoured by two combinations. This conclusion takes place in 
spite of the latter outcome being perhaps less physically possible or 
even impossible [?].  
    If a gambler bets on a double-six, and another one, on 2 and 1, and 
if they agree to disregard all other outcomes, there will be no other 
means (as we explain in the next chapter) to regulate their stakes than 
assuming the ratio of 1:2. And this will be as fair as when we are 
certain that the structure of the dice is perfectly regular. At the same 
time, if an umpire knew that the dice were fraudulent his agreeing with 
that ratio will be unfair and favourable to one of the gamblers. 
    This almost restricts [exhausts] the applications of the theory if it 
aims at simple judgements of probabilities varying according to the 
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knowledge and ignorance of men. However, if the theory is transferred 
to discussions of natural phenomena and social facts, the consequences 
derived from such judgements can lead to mistakes which we will 
illustrate by examples and which can undermine the confidence in 
legitimate applications. 
    47. The calculus of chances was born in connection with such 
regulation of stakes (compositio sortis, casting lots13). A remarkable 
passage from Pascal’s letter shows that he did not at all think about 
applications of the geometry of chance in the field of judging 
possibilities to the economy of natural facts. The great geniuses of the 
17th century, Fermat, Leibniz, Huygens who were occupying 
themselves with the calculus of combinations and chances 
simultaneously with, or a few years later than Pascal, only thought 
about the problem of points14. Jakob Bernoulli, in his Ars Conjectandi, 
formally determined the essential aim, the objective value of the 
theory of chances. At the same time, however, the continuous 
application of the terms probability, conjecture, etc paved the way for 
misunderstandings leading to confusing expositions and uncertain 
applications.  
    The title of the first edition of De Moivre’s Doctrine of Chances 
which appeared in 1718, five years after the publication of the Ars 
Conjectandi, lacked that inconvenience, but even now authors 
sometimes discuss chances of an event in the sense of possibility and 
probability. It is regrettably inconvenient to apply the same term in 
two meanings, for denoting either each random combination leading to 
a determined event, or the ratio of their number to the number of all 
random combinations with both numbers being either finite or infinite 
but their ratio converging to an assignable limit when those two 
numbers increase unboundedly.  
    To comply with the most ordinary usage, we continue to apply the 
word probability as a synonym of physical possibility with the 
exception of the case in which the discourse indicates a subjective 
meaning. At the end of this book we examine whether there are other 
probabilistic judgements in addition to those connected with the 
mathematical theory of chances and randomness and try thus to 
complete the exposition of our subject. 
    48. The term probability taken in the subjective sense corresponds 
to certitude, and it is often said that if probabilities are measured by 
fractions, unity is the measure of certainty15. Actually, if all the 
chances or possible random combinations favour an event, it certainly 
occurs and the probability of the contrary event is exactly zero. 
However, on the other hand it is recognized that there exists an 
essential difference16, not only with respect to magnitudes, but 
between probability and absolute certainty.  
    It is absurd to say that absolute certainty is composed of the sum of 
two or more probabilities. In the entire doctrine of mathematical 
probabilities or possibilities the term for comparison is not a rationally, 
metaphysically or absolutely certain event, but a physically certain 
event, whose probability only differs from unity by an infinitely small 
magnitude, or the event whose contrary is physically impossible as 
explained above both by general reasoning and examples. Thus is 
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homogeneity re-established. It should be invariably present in things 
subjected to measurement and calculation and only a semblance of 
difficulty remains for those familiar with the sense of expressions in 
mathematics. 
 

Notes 
    1. D’Alembert, Condorcet. [B. B].  
    2. This idea goes back to Cicero. [B. B.] 
    3. D’Holbach and others. [B. B.] 
    4. The stated definition of randomness goes back to Aristotle. [B. B.] 
    5. That example is due to Cicero. [B. B.] 
    6. Bru named Jakob Bernoulli but had not justified his statement. 
    7. See Laplace (1814/1995, p. 2) who followed d’Holbach and Buffon. [B. B.] I 
add: see also Maupertuis (1756, p. 300) and Boscovich (1758, § 385). O. S. 
    8. See Ars Conjectandi, beginning of Chapter 1 in pt. 4. [B. B.] 
    9. See De Moivre (1733/1756, p. 253). [B. B.] 
    10. Bru named Newton and Clarke. In 1715 – 1716 the latter exchanged letters 
with Leibniz in which he defended Newton. In 1717 he published this 
correspondence, see its edition of 1998. 
    11. Bru named Laplace (1814/1995, p. 62) and Quetelet. 
    12. In the beginning of § 45 Cournot quoted Laplace who had formulated that idea 
but added that All these reflections are … wrong! 
 
    13. And then an absolutely new scientific work whose subject is not until now 
studied: distribution of chances in games which obey them; in French, it is called 
“faire les partis des jeux” [divide the stakes]. The uncertain fortune so well submits 
to the fairness of calculation that each gambler always gets exactly what belongs to 
him by right. And this is certainly what should be determined by reasoning the more 
the less possible it can be found by experience.  
    Actually, the results of ambiguous lots are justifiably attributed to fortuitous 
contingency rather than to natural necessity. This is why the problem remained 
uncertain to this day. However, now, what had been resisting experience, can not 
avoid the dominion of reason. Owing to geometry, we have reduced the problem 
quite surely in an exact manner, and its certainty has partly daringly advanced. And 
so, combining rigour of scientific demonstration and incertitude of randomness and 
conciliating things apparently contrary to each other, it is possible to elicit its name 
from both and rightfully appropriate for it the stupefying title Geometry of 
randomness, aleae geometrie. 
 
    This is a passage from Pascal (1654). The Academy of Sciences was only founded 
in 1666. A. A. C. 
    Cournot quoted this passage in its original Latin. Bru provided its French text, 
now also published, and my translation is from French. O. S. 
    14. This is only true with regard to Fermat (who only corresponded with Pascal 
about games of chance). Leibniz left not less than five manuscripts first published in 
1866 on Staatswissenschaft and political arithmetic and Huygens is known to have 
stated that the new theory was only in the making. In 1669 he studied problems of 
mortality but that work was only published in 1895. And Cournot should have 
certainly mentioned Halley. 
    15. Bru mentioned the beginning of Chapter 1 of pt. 4 of the Ars Conjectandi and 
Lacroix. 
    16. Bru mentioned Buffon and Euler’s Letters to a German Princess. 
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Chapter 5. Sale Prices of Chances and Probabilities.  

The Market of Chances and Games in General 
 

    49. If a lottery1 offers a commercial object, each of its tickets 
representing an eventual right to own it can be in turn offered for sale, 
and its sale price is the price of the chance of the eventual right as 
ensured by the ticket. There is absolutely no reason to value one ticket 
more than another so that two people having m and n tickets 
respectively possess values in the ratio of m/n. 
    What we say about chances in a lottery usually represented by 
tickets can be equally applied to any kind of chances and it follows 
that when many people have eventual rights to a commercial object 
which can in turn be commercialized, the sell price of such an object is 
necessarily proportional to the respective probabilities of obtaining it. 
That consideration is not yet sufficient for establishing the absolute 
value of each chance, and it is actually clear that each person can 
determine its sale price as well as that of any other merchandize 
according to its particular convenience. 
    And just as the course of things usually dealt with in commerce, is 
established, so also a course is developed for chances which can 
become objects of everyday speculations. Therefore, the price of each 
chance is to the price of the thing to which the chance ensures a risky 
right as unity is to the total number of chances. And if the course 
assigns a lower price for each chance, the owner of the thing will not 
get the usual price and will not raffle it. On the contrary, if the course 
assigns a higher price for each chance, speculators will benefit by 
buying that or a similar thing for distributing its value among 
negotiable chances. The emerging competition will lead to the 
lowering of the course until it returns to the level which they exceeded 
for some time. 
    In this purely theoretical reasoning we have for the sake of greater 
simplicity abstracted ourselves from the invariably involved overheads 
and salaries. Instead of the actual state we substituted a fictitious state 
which is the closer to the real processes of commerce the freer are 
those processes, and this is how the laws of commercial equilibrium 
should be researched. 
    50. Because of a rather bizarre association of words the product 
obtained by multiplying the value of a thing in monetary units by the 
fraction expressing the mathematical probability of gaining it is called 
mathematical expectation. According to the above, it is the limit to 
which by the laws governing free trade invariably converges the sale 
price of chances owned by each who claims a thing or the sale price of 
the probability of its gain. If the risky right is obtained for moneys 
variations of the course are excluded and the mathematical expectation 
of each claimant becomes fixed as soon as the probabilities of gain of 
each of them is known just as it is in games of pure chances when the 
combinations can be calculated. 
    If the gamblers agree to stop playing they ought therefore to share 
the stakes proportionally to their probabilities of gaining since each 
chance represents an equal right to get them. The rule of mathematical 
expectation is therefore reduced to the division rule (§ 47) which 
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became the occasion for the first researches of mathematical 
probability. If Peter bets on event A and Paul, on event B, their money 
whose sum forms the stakes should be respectively proportional to the 
mathematical probabilities of A and B. Indeed, if all the chances or 
equally possible random combinations which can produce A and B are 
enumerated, there will be no reason for betting on one of them rather 
than on another. The sum bet on A can be considered as a total of the 
sums bet on each of the chances bringing about that event, and the 
same is true for event B. When examined from this other point of view, 
the rule of mathematical expectation is confounded with the division 
rule2. 
    51. Selling a thing for a fair price means selling it for a price 
established by a free competition of buyers and sellers, and just as well 
the mathematical expectation is therefore the fair price of chances or 
the limit to which that price approaches when the overheads of the 
transaction diminishes. If the demanded price is different, equitable 
conditions do not anymore govern the market of chances. The same 
happens to all other markets if one of the contractors benefits from the 
advantage of his position, − from the needs, passions or ignorance of 
the other contractor, and gives him in exchange less than would have 
been determined in the absence of any illusions by free competition.  
    It does not follow that the same price of one and the same thing suits 
everyone or that a certain expense is reasonable only because its price 
was not higher than the course. The acceptable value as opposed to the 
commercial price is evidently subordinated to the buyer’s particular 
situation and fortune. It is impossible to measure and subject to 
calculation that price of things, − of chances and of all other 
commodities.  
    It is undoubtedly well understood that when a person buys a chance 
which is something uncertain he risks the more the larger is its given 
certain price relative to his fortune. Common sense also tells us that 
the importance of an amount of money decreases for the person whose 
fortune increases. Thus, for a worker who saved a thousand francs and 
risks a half of it in the game of passe-dix (§ 25), the 500 francs of 
possible gain cost less than the 500 that he risks3. That relative value 
of chances is called moral expectation, and various rules for evaluating 
it were proposed, all of them arbitrary and lacking real applications. 
Calculus should not be abused if desired that it preserves its authority 
over things situated in its domain. And in general we run the risk of 
discrediting logical argumentation (with calculus only being one of its 
branches), when it is transferred beyond the sphere of logical 
combinations. 
    52. Let us return to the lottery with moneys proposed as the prize 
and its tickets representing the corresponding chances of gaining them. 
If the government does not exercise a monopoly on such an enterprise 
for itself or for the concessionaire, the price of a ticket does not exceed 
the attached mathematical expectation more than justifiably needed for 
covering the expenses of management, of selling [the tickets] and the 
commercial interest on the necessarily involved capital.  
    Here, however, we evidently have a bad application of a part of the 
capitals and productive forces of a nation. First of all, that application 
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is unproductive for the country or for the society of its citizens since 
some of them only gain what others lose. A prolonged conduct of such 
an enterprise tends to impoverish many people for enriching a few 
favoured by chance and thus to widen the inequality of fortunes 
beyond the difference that can be demanded by the natural laws of 
society. And, after all, these instant gains not at all compensating work 
incline to prodigality, luxury and unproductive expenses; they harm 
the society in a purely economic way and corrupt morals which is 
much more pernicious. 
    It would have been otherwise had the lottery been the only possible 
means for producing a useful thing, as publishing, for example, a 
luxurious book whose copies are too expensive to be sold but are the 
lottery’s prizes. We see that under some circumstances speculating on 
chances for supplementing a productive speculation can become an 
advantageous and laudable means for making use of a part of the 
capitals and productive forces of a nation.  
    Suppose that [a group of] workers each aged thirty draw the same 
moneys out of their savings and deposit them in a joint account under 
the condition that after thirty years those moneys complete with 
interest will be shared by those still living. Such associations are called 
tontines,4 and the chances there, similar to those in lotteries, can be 
useful if not directly productive if each worker sacrifices a certain sum 
without which he can painlessly manage while being able-bodied and 
thus ensures his subsistence in case he becomes old and unable to live 
by working. On the contrary, if he could have been able to ensure a 
decent living in old age just by economizing but preserving the fruits 
of his labour for his children, then his deposit would have only aimed 
at easily enriching himself or his family by trusting chances, − then the 
tontine should be condemned like lotteries, and for the same reason5. 
    Economists have justly remarked that considerable salaries, attached 
to certain lofty functions or the large possible profits in certain 
professions for those who excel in them and managed to become 
eminent, act like a large random bonus, like a considerable prize 
offered for many but obtained by few. These random bonuses allow 
the maintenance of money payments for many public and private 
services on a more modest level and excite the activities which would 
have numbed. And in these various aspects they can in proper limits 
foster progress and the well-being of the social corps.  
    53. In general, randomness intervenes in all things of our world. In 
the economic life, each speculation has more or less the nature of a 
market of the fortuitous. All kinds of commercial affairs invariably 
include the buying and selling of chances. When possible and 
desirable to save a commercial speculation or a single private affair 
from its inherent fortuitous condition, the contract is called assurance, 
and we treat it in a special chapter. The contract of assurance is always 
favourable since it dissipates uncertainty restraining productive 
activity and generates free development. It extends the power that man 
had acquired by his free intelligence, his foresight over physical nature 
which only obeys the laws of fatality.  
    The addition of the fortuitous bonuses to speculation to which it 
does not necessarily belong is an operation inverse to insurance. We 
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can consider it favourably or unfavourably depending on whether it is 
a useful auxiliary of a productive operation or an absorbent acting 
contrary to productive operations, becomes a fancy dress of sorts and 
degenerates into hullabaloo, into a pure game. It is easy to understand 
that between these extremes there can be innumerable nuances which 
can not become an object of precise determination. 
    54. We (§§ 49, 52) supposed that the lottery runs under conditions 
of free competition. However, if a similar enterprise becomes an object 
of legal monopoly ran by the government or tax-farmers, it can benefit 
the operator, the state revenue after covering all the expenses of the 
exploitation.  
    Pursuing fiscal aims, the government could have supported passions 
and disorders, moral or economic, occasioned by fortuitous 
speculations and at least would have benefited from the opinion that 
these passions and disorders are indestructible for attempting to gain a 
certain monetary advantage for profiting the political corps instead of 
conceding that advantage to private speculation. 
    It is useless to return to a problem treated many times for promoting 
order and morals and happily legally solved in France. In cases of 
embarrassment governments often resort to fortuitous bonuses for 
favouring its loans. And if the accumulation of capitals in a country on 
the way to prosperity renders this expedient useless, we see 
nevertheless that commercial deals concerning public funds, useful in 
themselves, serve as an excuse for organizing a vast market of chances 
whose misuse the governments neither can nor desire to suppress. It is 
not our intention to treat these political or financial problems which 
are only in a roundabout way connected with the mathematical theory 
of chances. The indicated suffices. 
    55. The entrepreneur of the fictitious lottery which we considered as 
typical, or the banker, does not gamble, they only distribute the 
chances. Usually, however, in public lotteries or similar markets of 
chances the banker plays against the punters or those whom he sells 
the chances. The punters do not gamble against each other through the 
banker, all play against him. The same random event leads to the gain 
of some punters and to the loss of others depending on their preference 
for some chances based on fortuitous circumstances, whims or systems 
of gambling.  
    For simplifying calculations, we assume that in each of a long 
number m of drawings the punter stakes the same sum a with 
probability p of gaining b. If the game is fair, the stake is exactly equal 
to the mathematical expectation [of gain] pb or only exceeds it for 
covering the banker’s expenses. However, once the bank has a 
financial aim, or the monopolist’s interest comes into play, the 
difference (a – pb) or the banker’s advantage will amount to a notable 
portion of a. In the previous Lottery of France it was 1/6 of the stake 
in cases of gambling on one number out of 5, about 1/3 and almost 
22/25 for gambling on 2 and 4 numbers.  
    Denote by P the probability that the number of sets won by the 
punter is contained between m(p – l) and m(p + l). For large values of 
m the value of P only depends on the ratio (33.1) 
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and we adduce an appropriate table sufficient for all practical purposes. 
    Now, P is also the probability that the total sum gained by the 
punter is contained between mb(p – l) and mb(p + l). His stakes 
totalled ma, and if mb(p + l) < ma, or if l < a/b − p, P will be the 
probability that the punter’s loss is contained between 
 
    ma − mb(p − l) and ma − mb(p + l). 
 
    If, on the contrary, l > a/b − p, P will be the probability that the 
punter’s loss or gain do not exceed [ma − mb(p − l)] and  
[mb(p + l) − ma] respectively. Suppose for example6 that m = 3000,  
p = 1/18 and the banker’s advantage, as in the example above, 1/6. 
Then even money can be bet on the final loss of the punter to be 
contained between 373 and 627 times his stake, and 20,000 against 1, 
that his gain does not exceed 265 times, and his loss does not exceed 
1265 times that stake. When the stake is unity, these limits are 
expressed by large numbers, but they become 15 times smaller if we 
assume that b = 1.  
    In lotteries understood in their proper sense, drawings follow each 
other very slowly so that the same punter can not repeat trials of the 
same randomness many thousand times, but in public games, on the 
contrary, the sets end so rapidly that such numbers do not present 
anything extraordinary. And in such games the banker only reserves 
for himself a very small advantage not to discourage the punters and at 
the same time the prompt repetition of the sets multiplies his benefits 
and assures them.  
    56. A person who usually plays games of pure chance against the 
first comer is like a punter for whom the public is the banker. In such a 
case he is however playing a fair game, i. e. his stake is equal to his 
mathematical expectation, and most often he plays when the chances 
are equal so that the probability of gain is 1/2. For a series of 3000 sets 
it is even money that his loss or gain will be less than 19 times his 
stake, and a bet of 20,000 to 1 on the loss or gain not to exceed 111 
times his stake7. If the number of sets becomes 4, 9, 16, … times larger, 
those limits should be multiplied by 2, 3, 4, … The probable loss or 
gain always increases with the number of sets although in a much less 
rapid and invariably slowing progression.  
    If the same two gamblers are playing all the time against each other, 
and the game lasts indefinitely, that progression, however slow it 
becomes, will certainly ruin one of them. Depending on the ratio of the 
stakes to their fortunes, one of them will be likely ruined after a more 
or less large number of sets. It is, however, proper to remark that if 
that ratio is not much larger than usual, the number of sets leading with 
a considerable probability to the ruin of one of the gamblers is larger 
than practically possible.  
    57. Anyway, these calculations are based on the hypothesis that the 
capital of each gambler allows him to complete the number of sets 
which we denoted by m. This can always be supposed with respect to 
those who only play for amusement. However, the contrary can 
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regrettably happen when the game is passionate, and then we ought to 
find out whether the chances of a final loss will not disappear as 
compared with those of the anticipated ruin. Calculation of the latter 
chances becomes here the more necessary since we usually have a 
vague idea about their influence on the gambler’s fate and since it is 
believed necessary, with very laudable intentions, to exaggerate that 
influence8. We think that it is still better to keep to arithmetical rigour. 
    To offer a simple example, suppose that A and B play staking equal 
sums and having equal chances, and that the stake is 1/50 of A’s 
capital. Suppose at first that A and B are equally rich or disposed of 
exactly the same capitals. Then there will be probability 0.8859 or a 
bet of almost 9 against 1 on A not being ruined at the 1000-th set and 
0.4954 or almost 1:1 that he will be ruined not later than at the 10,000-
th set.  
    Suppose now that B’s capital is twice as large as A’s. Then the 
former probability will not appreciably change but the latter will 
become 0.604; about 3 can be bet against 2 on A’s ruin not later than 
at the 10,000-th set. The influence of the superiority of B’s fortune 
becomes appreciable, but much less than usually thought. Finally, 
suppose that B’s capital is infinite or inexhaustible. The probability of 
A’s ruin not later than in the 1000-th set still remains appreciably the 
same, but the probability of his ruin not later than in the 10,000-th set 
will become 0.617 which is only a bit higher than before.  
    If A’s capital increases twice, three or four times, the number of sets 
necessary for his anticipated ruin with the same probabilities should be 
increased 4, 9, 16 times9.  
    58. As a summary, the calculations confirm that, as indicated by 
common sense, when unequally rich gamblers play high, the richer of 
them, other things being equal, is at advantage since he can longer 
sustain misfortune. However, at the same time calculation shows that 
that advantage is much feebler than people tend to believe and 
insensible if the stake of a gambler in each set is not a considerable 
fraction of his capital and the number of sets is not very large. 
    The usual superiority of the richer gambler, if shown by well 
ascertained observations can also be explained otherwise. The richer 
gambler less feels losses and freer exercises his mind, whereas his 
opponent despaired by the reverses of fortune usually begins to 
increase ever more his stakes which suffices for ruining him in a much 
less number of sets. It is proper to remark here that all the calculations 
above supposed that the stakes were invariably constant.  
    The disadvantage of the gambler playing a large number of sets with 
a richer adversary becomes more justified when he plays the same 
number of sets against the first comers. Indeed, this is tantamount to 
playing with an infinitely rich opponent who can ruin him without 
risking to be ruined himself.  
    The capital of the tax-farmer of a gambling house is enormous as 
compared with those possessed by the punters. Therefore, each punter 
taken alone is at a disadvantage, but it does not follow that that 
inequality of position suffices for assuring the banker’s benefit. If all 
the other conditions of the game are equal, the banker can equally lose 
or gain. It is wrong to see here a contradiction to what was said about 
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the disadvantage of punters. Although it is more probable that each 
individual punter will be ruined, it does not follow that it is more 
probable that all of them will be ruined or that they will not gain.  
    59. The profits of an entrepreneur of public games11 rest on a much 
more solid base than the inequality of the conditions of playing 
between the punters and him. We saw (§ 55) that in an unequal game 
the mean loss of a gambler being at a disadvantage increases 
proportionally to the number of sets whereas the interval between the 
limits in which the loss oscillates increases proportionally to the square 
root of that number. Therefore, a moment will arrive when the mean 
loss imposed by the rules of the game and the gambler’s disadvantage 
becomes incomparably larger than the variations of that loss 
occasioned by the anomalies of chance. When for example the mean 
loss is counted by the million those variations are counted by the 
thousand, since a thousand is the square root of a million.  
    In the public games sets rapidly succeed one another and when 
many punters play at the same time betting different chances and 
varying their stakes capriciously or systematically, it is impossible, at 
least by experience, to calculate the number of sets after which there 
will be a certain probability that the accidental variations of the 
banker’s gain remain contained within some limits. This precision is 
however barely needed. Suffice it that the theory and experience agree 
in ascertaining the banker’s mean benefit resulting from the rules of 
the game.  
    The same remark all the more applies to lotteries. The number of 
yearly drawings is not considerable, and when considering them as 
sets, it seems that a great number of years should pass for the lottery to 
rely certainly on benefits. On the other hand, if all the stakes are equal 
one to another; if the chances were of the same kind; and if each 
punter selected the numbers accidentally, – then each drawing can be 
considered as providing as many sets as there were stakes, and this 
returns us to the very simple example of § 55.  
    However, all these various assumptions are inexact. Certain 
prejudices prevail among regulars of lotteries12 and act in the same 
way on many stakes preventing a sensibly equal distribution of the 
chosen numbers or their combinations which takes place when the 
selection only depends on irregular and accidental causes. Only 
experience can measure the effect of those prejudices and only it can 
therefore indicate the number of drawings and stakes sufficient for 
assuring the lottery’s benefit. 
    The official table of the results of the Lottery of France shows that 
from year VI [1793] to 1835 inclusive they varied with the increase 
and decrease of the [number of] stakes and depended on the unequal 
distribution of the different chances. However, that inequality much 
greater than it would have been in case of purely random causes never 
threatened the Treasury by loss. Experience also convincingly showed 
the administration of the Lottery the possible influence of those 
prejudices at each drawing, and it never exercised its right to withdraw 
the overloaded numbers.  
    60. The feebler was the probability of gain corresponding to the 
different chances of the previous lottery (when gamblers selected 1, 2, 



 59 

… numbers) the more advantageous it was for its administration since 
it raised the price of the tickets ever higher than the mathematical 
expectation [of gain]. It thus heavier taxed greater greed, but it also 
understood the need to ensure greater security in cases of less 
frequently repeated chances which can, although very unlikely, 
notably reduce the lottery’s reserve. The gain on the quine, i. e. on a 
gamble on 5 numbers, was only a million times more than the stake 
whereas its probability was 1/43,949,268 so that the administration’s 
benefit amounted to 42/43 [43/44] of the stake.  
    Nevertheless, the administration finally suppressed that version of 
gambling either to save itself from troubles or because the quine was 
played too rarely for the benefit of speculating on that chance to justify 
the complications of reckoning. It is well known that there should be a 
limit of the smallness of negotiable chances or probabilities. A random 
extraction of the one white ball contained in an urn among 108 or 109 
balls is so unlikely that no one will wish to speculate on it. And if 
someone accidentally makes such an attempt, it will be an exception 
too rare for that chance to acquire a current commercial value or to be 
included in the price list of a company enjoying a monopoly on 
chances. 
    61. These considerations will provide a most natural solution of an 
entertaining problem called the Petersburg game13. By its captivating 
form it resembles the celebrated sophisms of ancient Greece. It can be 
formulated thus. Peter and Paul play passe-dix (§ 25) under the 
condition that Peter pays Paul 1 franc if the number of points exceeds 
10 at the first throw, 2 francs, if that only occurs on the second throw, 
4 francs, if only on the third throw, etc. The game does not end until 
that event happens and it is required to determine the expectation of 
Paul or how much he ought to stake in advance. 
    According to the fundamental notions of the calculus, Paul has 
probabilities 1/2, 1/4, 1/8, … of gaining 1, 2, 4, … francs depending 
on Peter throwing more than 10 points in the first, the second, the 
third, … toss. The value of his expectation is the sum of these random 
gains multiplied respectively by the corresponding probabilities. 
However, each of these products is 0.5 francs so Paul should stake 50 
francs if the game will necessarily end at the 100th throw; 500, if at the 
1000th; and more than any assignable sum, or an infinite amount if the 
gamblers agree to continue playing as long as necessary for Peter to 
throw more than 10 points. And still, as is remarked, no sensible 
person will risk here not only an infinite sum (which no one has) but 
even any considerable part of his fortune.  
    For solving this paradox, most geometers insert their hypotheses 
about moral expectation (§ 51) according to which the useful value of 
a sum of money increases less rapidly than its nominal value or even, 
as some of them hold, does not increase above a certain limit. Those 
explanations seem to us too arbitrary for adopting them.  
    Poisson very simply remarked that Peter can not pay more than he 
has and if he possessed 50 mln francs, an exorbitant sum for an 
individual, he will not be able loyally to commit himself to continue 
playing beyond the 26th throw. Indeed, at the 27th throw his debt to 
Paul in case of loss, 226 = 67,108,864 francs, will exceed his fortune. 
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On the other hand, Paul, if knowing Peter’s fortune, will not commit 
himself to the same and will not risk more than 13 francs. Supposing 
that the number of throws is not restricted, we find that, although he 
can not at all receive from Peter more than 50 mln francs, the 
mathematical value of his expectation is not more than 13.5 francs.  
    This remark does not however get to the bottom of the difficulty. 
The proper value of a thing should not be confused with the relative 
value which results from the degree of the debtor’s solvency.  
    Suppose that a public lottery is organized under the same conditions. 
Peter is substituted by a blind instrument throwing dice; the lottery’s 
administration issues tickets numbered 1 ensuring their holders 1 franc 
if 10 points are exceeded on the first throw; tickets numbered 2 ensure 
2 francs, if the same is only achieved on the second throw, etc. 
Because of the monopoly enjoyed by the lottery, it can price the tickets 
numbered 1 at higher than 0.5 francs and sell them easily. Similar 
pricing of tickets numbered 2, 3, … will be successful, but finally a 
number arrives for which there is no buyer, or they are found so rarely 
that the administration suppresses that chance. And still the game will 
be fair because the administration’s solvency guarantied by the state, 
can not be doubted. Peter’s lot as described here initially, is the same 
as the punter’s who bought a ticket of each kind. 
    62. Systematic gamblers, i. e. those who know a system of gambling 
ensuring them, as they believe, a benefit or at least preventing their 
loss, are often met in games played in societies as well as in public 
games. Their stakes follow some progression or they prescribe rules 
for entering a game and leaving it. The bounds of our work do not 
allow a detailed description of these systems which can vary most 
widely. Suffice it to express as a mathematical truth which 
immediately follows from definitions and which it is easy to show by 
example of some system. A gambler, whichever system he applies, can 
not ensure a probability of 100 to 1 of gaining a franc in any fair game 
without running the risk measured by probability of 1 to 100 of losing 
100 francs.  
    The products obtained by multiplying the possible gain and loss by 
their probabilities should always remain strictly equal. If the game is 
not fair, no method of playing can abolish the inequality of the 
conditions of the opposing parties. In each case there is a product of 
two factors whose value invariably results from the conditions of the 
game which the gambler can not change by his method. However, he 
certainly can increase one of these factors by his method to the 
detriment of the other. He can choose to decrease or increase the 
eventual gain or loss by proportionally increasing or decreasing the 
probability of either. Just the same, the vis viva expended by various 
machines can serve to double the distance and halve the [carried] mass 
or halve the distance and double the mass […]14. To search for a 
machine which creates rather than absorbs the vis viva means to share 
the chimera of the inventors of perpetual motion. […] 
    The overheads of the game represent the wasteful absorption of the 
vis viva by the machine, and any system of gambling can be 
considered as a machine by whose aid the gambler can vary the two 
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elements according to his views and motives, but their product never 
varies. 
    63. It is proper to indicate here that people otherwise sensible are 
prone to become victims of an illusion. Each of us has a confused 
feeling that in a long succession of events the anomalies of chance 
should likely be almost compensated. Therefore, it is imagined that if 
an event lacking many chances is reproduced more often during a 
certain period it will occur less often in the next one, as though the 
independence of successive events does not exclude any influence of 
the passed chances on the future chances. However, imagination has 
difficulties in seeing that the laws of chance are consequences of 
mathematical laws governing combinations; it is always tempted to 
provide chance with a substantial and productive property with its own 
energy and an aim of sorts. Suffice it to indicate such illusions for 
safeguarding any reasonable person against them. 
    If, in a long run of random trials, the ratio of the number of events A 
to that of the contrary event B appreciably differs from the ratio of 
their probabilities, it reveals some irregularity in the pertinent chance 
mechanism or, more generally, the existence of a cause under whose 
influence the allegedly equally possible combinations serving for 
calculating the probabilities of those events were not really such.  
    If, for example, the double-six occurred a thousand times in ten 
thousand tosses of two dice (§ 6), the structure of the dice was 
certainly irregular. It can also be possible that the gambler, who puts 
the dice in their box, throws them either habitually or deftly in such a 
manner that the probability of the arrival of the double-six is 
heightened. Instead of being able to derive the value of that probability 
in advance, it should be determined by experience, as we will describe 
below. 
    If a game depends on skill and chance with the same chances for 
both gamblers, and one of them wins much more than a half of a long 
series of sets, it was certainly due to the superiority of his skill. 
Conversely, in a long run superiority of skill should prevail over 
irregularity of chance. What we attribute to that superiority of the 
gambler’s skill and sangfroid, others, if they desire, impute to a 
mysterious fatality which pursues some people and seems to be 
pleased to favour the rest. 
    This belief is one of those rooted in the human heart. It results from 
a confused feeling of an inconceivable supernatural system not 
yielding to reasonable discussion. It contributes at least as much as 
greed and ambition to maintaining an inclination to venturesome 
enterprises and fortuitous speculations. The history of that belief, its 
origin and effects belong to the field of moralists and psychologists 
and have no place in an exposition of a mathematical subject. 
 

Notes 
    1. A law of 1836 suppressed all but charitable lotteries. [B. B.] 
    2. Concerning that other point of view, Bru refers to De Moivre (1718/1756, p. 3). 
There, De Moivre first applied the word expectation irrespective of its definition 
which he added a few lines afterwards.  
    3. Bru refers here to Buffon (1777, § 13). See also Note 13. 
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    4. Tontines were named after an Italian banker Lorenzo Tonti (1630 – 1695). 
Contrary to Cournot’s explanation, they were groups of annuitants of about the same 
age considered by the entrepreneurs (usually, the appropriate state) as single entities. 
A tontine distributed yearly payments among its still living members and those living 
long enough came to enjoy considerable moneys. Bru noted that tontines were 
ruinous for the state (apparently only because their financial conditions had not been 
properly considered) and suppressed in 1740 but reappeared later and existed even in 
the mid-19th century.  
    5. Bru noted that in 1821 a commission of the Paris Academy of Sciences (Fourier, 
Poisson, Lacroix) negatively reported on the establishment of a tontine and that it 
had been felt that tontines harmed the development of insurance. 
    6. This contradicts the pertinent result of § 34. [B, B,] 
    7. Bru stated that Cournot’s estimates should have been 30 and 222. 
    8. Bru referred here to Ampère and Lacroix. 
    9. Suppose that gambler A plays a fair game with opponent B whose fortune is 
reputed infinite and each time stakes 1/α of his capital. Denote by П the probability 
that he will be ruined not later than at the n-th set and let 
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In most cases the second term can be neglected (§ 33, Note 3). The value of the first 
term is provided in the table adduced at the end of this work. A. A. C.  
    10. Bru referred to Laplace and Fieller (1931). 
    11. Public games were allowed in Paris and spa towns from 1818 to 1838. [B. B.] 
    12. Many authors beginning with Montmort (1708/1713, pp. vi − vii) mentioned 
these prejudices. 
    13. It was Nikolaus Bernoulli (Montmort 17108/1713, pp. 280 – 285) who 
invented the Petersburg game. Below, in the same section, Cournot stated that many 
geometers studied it. The main author among them was Daniel Bernoulli (1738) who 
published his memoir in Petersburg. At the end of the 19th century economists, 
issuing from Bernoulli’s ideas, began to develop the theory of marginal utility.  
    14. Bru noted that Mises applied the same comparison with the vis viva for 
justifying one of his axioms. 
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Chapter 6. The Laws of Probability. Mean Values and Medians 
    64. We know that in natural phenomena the number of 
combinations or chances which can occur by a fortuitous conjunction 
of independent causes is usually infinite (§ 15). Therefore, ordinarily a 
magnitude whose determination depends on these conjunctions can 
without discontinuities take all values contained between certain limits 
or even be unbounded either above or below. Since these values are 
infinite in number, the probability of each is infinitely low. It is 
physically impossible for a bet on some precise value not to be lost. 
Generally, however, those infinitely low probabilities are not the same 
at all. Between themselves, they preserve certain finite and assignable 
ratios which only in particular cases are reduced to unity. 
    This was indeed borne in mind when the problem of § 16 was 
treated. Its formulation can be modified for generalizing it as desired. 
Suppose that we have a flat figure limited by segment AB of the x-axis, 
perpendiculars Aa and Bb and some curve ab. A sphere is randomly 
thrown on that figure so that the abscissa of the point of contact can 
take all values between OA = a, and OB = b where O is the origin of 
coordinates. It is requested to determine the probability that that 
abscissa takes a certain intermediate value OI = x. In other words, the 
probability that the point of contact is situated on the perpendicular Ii 
to AB between Aa and Bb. That probability is infinitely low because 
the point can just as well be on infinitely many other perpendiculars to 
AB situated between Aa and Bb. However, when comparing the 
probabilities of the fall of the sphere on Ii and another perpendicular 
Hh, it follows from the formulation itself of the problem that the ratio 
of these probabilities equals to that of the lengths of Ii and Hh so that 
these infinitely low probabilities are not at all equal. […] 
    The same fact can be presented otherwise. Choose points I1 and I2 
close to each other and situated on different sides from I. The 
probability of the point of contact of the sphere and the figure being 
within the curvilinear trapezoid I1I2i2i1, or that the probability of the 
abscissa of that point being between OI1 and OI2 is evidently 
expressed by the ratio of the areas of that trapezium and of the entire 
figure. […] 
    65. In general, whichever are the conditions of randomness that 
assign one of the infinitely many values contained within limits a and 
b to a certain magnitude x, that case can be likened to the 
abovementioned. The curve ab will represent the law of probabilities1 
of the different values of x situated between those limits. The ratio of Ii 
to Hh is that of the infinitely low probabilities of x taking exactly the 
values OI and OH. [Here, Cournot introduces the terms abscissa, 
ordinate (its function, as the geometers say, and axes of coordinates.]  
    For the sake of brevity, we call the curve of probability2 that curve 
which appropriately represents, as we have explained above, just like 
in § 31, the law of probabilities of different values of a variable 
magnitude. 
    66. The curve of probability extends to infinity, if, for example, all 
the values of magnitude x from 0 to ∞ are really possible. However, 
for the notion of probability to make sense it is necessary for the total 
area of the figure between the coordinate axes and the curve ab (Fig. 
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1)            extended to infinity in both directions to preserve a finite 
value. This condition supposes that a current ordinate will decrease 
and become less than any limit [any arbitrarily small magnitude]. But 
this is not sufficient for ensuring the existence of the first condition, at 
least when considering it abstractly and purely mathematically.  
    In the physical reality it always happens that for a certain value of 
the abscissa OB the corresponding ordinate becomes so small that the 
portion of all the area beyond it can be neglected without an 
appreciable error. The values beyond OB, although strictly speaking 
are possible, occur so rarely that they can be disregarded as physically 
impossible which they always are. Thus, the probability of living until 
110, 120, 130 years is not exactly zero since some people exceeded 
them.  
    Probably there even are no mathematical conditions or other of 
mathematical rigour which determine the limit of an absolutely 
unattainable age. Nevertheless, in all problems belonging to the 
domain of the calculus of probabilities it is quite admissible to treat 
probabilities of living until 110 years or more as zeros, and it can be 
assumed that no one had lived 200 years. If the appropriate magnitude 
randomly takes negative just as positive values, the curve of 
probabilities can extend to infinity in both directions. […]  
    67. Imagine now that after tracing the curve of probabilities we 
separate the interval AB between the extreme values of the abscissa in i 
equal parts AA1, A1A2, … by equidistant ordinates A1a1, A2a2, … 
Denote by Ω the total area Abba and by w1, w2, … the partial areas 
AA1a1a, A1A2a2a1, … Then, as i becomes ever larger, the quotient 
 

    1 1 2 2 ...w OA w OA+ +
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ever closer approaches a certain value M represented by segment OG 
situated between OA and OB. Thus defined, M is the mean of all the 
values that x can randomly take within OA and OB. Because of its 
proper probabilities, each of these particular values contributes to the 
formation of the mean M which should appreciably coincide with the 
arithmetic mean of the particular values provided by a very large 
number N of fortuitous trials.  
    Separate the total series of these particular values in i partial series. 
The first of them, n1 in number, being between OA and OA1; the 
second, n2 in number, being between OA1 and OA2; … Since intervals 
AA1, A1 A2, … are short, the mean µ of the total series is appreciably 
equal to 
 
    (1/N)[n1OA1 + n2OA2 + …]. 
 
    On the other hand, since each partial series is supposed to contain a 
very large number of particular values, we have approximately 
 
    n1/N = w1/Ω, n2/N = w2/Ω, … 
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Therefore, the fixed value which the mean µ ever closer approaches 
when the numbers i, n1, n2, … and the more so, N ever increase, will 
indeed be M as defined above and represented by the segment OG.  
    According to the elementary notions of statics, if the figure Abba is 
one of the faces of a ponderable plate of uniform thickness and density, 
its centre of gravity will be on ordinate Gg. And if segment AB 
represents a ponderable bar of uniform thickness and density changing 
as the ordinates of the curve ab, point G will be its centre of gravity. 
    68. Suppose that OI is the abscissa whose corresponding ordinate Ii 
divides the total area Ω in two equal parts. Then OI is what we call the 
median value of x. Gamblers betting on x being smaller or larger than 
OI have equal chances of gaining. For a very large number of 
randomly determined values of x, the quotient of those, larger (or 
smaller) than OI, to the total number of trials very little differs from 
1/2.  
    As I have already remarked (§ 34), until now, authors usually but 
very improperly call this median value probable. Generally, this value 
does not coincide with the one to which corresponds the maximal 
ordinate of the curve ab and can not therefore be considered more 
probable than the others. Nothing prevents it from corresponding to 
the minimal ordinate of that curve and even to a zero ordinate in which 
case the median will not anymore be one of the infinitely many values 
randomly taken by x.  
    If the ordinates of the curve invariably increase from A to B, the 
median exceeds the mean value and vice versa. If the curve is 
symmetric with respect to some ordinate Gg, the mean value and the 
median coincide with the abscissa OG which is also the half-sum of 
the extreme values, and to which the largest or the smallest ordinate 
ordinarily correspond.  
    69. It is not difficult to understand that, depending on the interval 
between the limits within which oscillates the random magnitude, and 
on the form of the curve representing the law of probabilities of [its] 
different values, the mean value µ determined by a large number of 
trials should more or less rapidly tend to the absolute mean M as 
defined in § 67. Then, depending on the considered case, the number 
of the trials should be more or less large for securing a given 
probability that the anomalies of chance will only result in deviations 
contained within the assigned limits. 
    Modulus of convergence3 or simply modulus, as I call it, is the 
number which measures in each particular case the rapidity with which 
the means provided by the trials converge to the absolute mean. The 
value of that modulus is obtained in advance by the rules of the 
integral calculus after assigning the type of the function or the form of 
the curve representing the law of probabilities.  
    Denote by g the modulus, by m the number of trials and by P, the 
probability that the mean µ determined by these trials does not deviate 
in either direction from the abscissa of the absolute mean M by more 
than l. For large values of m P only depends on number4  
 
    t = lg√m                                                                            (69.1) 
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so that for a constant t (numbers l, m and g can vary) probability P 
does not vary either. Note that P is the same function of t as in § 33 for 
which we provide a table. For determined values of g and m the value 
of l corresponding to t = 0.476937 and P = 1/2 is that which we call 
the median deviation. The value approximately equal to 6 such 
deviations corresponds to t = 2.87 and P = 19,999/20,000 and can be 
considered as the extreme limit of deviations. 
    If the modulus of convergence is constant, the limit of the deviations 
for the same values of P varies inversely proportional to the square 
root of the number of trials. And if that latter number is constant, the 
limit of the deviations varies inversely proportional to the modulus5. 
    70. First example. Points are randomly distributed on a segment  
1 m long. In § 14 we similarly supposed that they are the points of 
contact of a ball thrown at random with a billiard board in such a way 
that there is no reason to suppose that the ball hits one point rather than 
another. The distance of the points of contact to one of the extremities 
of the segment is a magnitude that with the same probability can 
randomly take all the values from 0 to 1 m. The curve of probabilities 
becomes a segment parallel to the x-axis. The mean value coinciding 
in this case with the median value is 1/2 m and the modulus of 
convergence √6 = 2.4495. It follows that in a series of 1000 trials the 
median value of the deviations is 0.006519 m, or somewhat larger than 
6 mm. 20,000 to 1 can be bet on the deviation not to exceed 36 mm. 
These limits of deviations can be halved if there will be 4000 trials. 
    Second example. Points are randomly distributed on a unit circle as 
was indicated in § 16. The distance of a point to the centre of the circle 
is a magnitude that can randomly take all values from 0 to 1 m, but 
they are unequally probable. The probability heightens from one value 
to another proportionally to the distance of the point from the centre of 
the circle. The curve of probabilities becomes a segment not anymore 
parallel, but at an angle, whose tangent is 2, to the x-axis and passes 
through the origin O.  
    The mean value is 2/3, the median value that should exceed it (§ 68) 
is 1/√2 = 0.7071 m, and the value of the modulus is the natural number 
3. The limits of the deviations as compared with those in the preceding 
example are reduced in the ratio 300:245. 
    Third example. Points are randomly distributed in space within a 
unit sphere. The distance of a point to its centre is a magnitude x which 
once more randomly takes all the values within 0 and 1 m and their 
probabilities are proportional to the surface of a sphere of radius x, or 
to x2. The curve of probabilities becomes a parabola with its vertex in 
point O, OY as its axis and the focus at distance 3/4 m from the vertex. 

The mean value is 3/4 m, the median value, 1/√2 3[1/ 2]  = 0.7937 m, 

and the value of the modulus, 2 30 /3 = 3.5683 [3.6533].  
    It follows that the limits of the deviations as compared with the first 
example are reduced approximately in the ratio 357/245, a little less 
than 3/2. 
    71. Fourth example. Imagine a globe with the poles, an equator and 
meridians and parallels just like on terrestrial or celestial globes. It is 
randomly thrown and lands on the floor and its point of contact with 
the floor is carefully marked. Each of these points has a longitude and 
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latitude, the former varying from 0 to 360°. The latter, if the essence of 
the problem allows us, as below, to disregard its sign, is regarded as a 
magnitude susceptible to vary fortuitously from 0 to 90°. Supposing 
that the globe is really spherical and homogeneous, there will be no 
reason for it to stop at one rather than another region of its surface so 
that each longitude will be equally probable with its mean being 180°. 
If assuming the length of a meridian as unity, the value of the modulus 
will be the same as in the first example. Therefore, after a series of 
1000 trials the median value of the deviation will be  
 
    360°×0.006159 = 2°13′2″.064. 
 
For reducing that value to 1° we should have more than 4000 trials. 
    With latitudes, it is otherwise. Each of its values is the less probable 
the nearer it is to 90°, or the closer is the appropriate point to one of 
the poles. Indeed, two latitudinal circles very close to each other, with 
the latitudinal difference being 1′, say, circumscribe a zone on the 
spherical surface whose area is proportional to the cosine of the 
latitude.  
    The mean value of the latitude is equal to the complement of the arc 
of the same length as its radius, or 32°42′15″.2. The median value, 30°, 
is in this case smaller than the mean value (§ 68). The value of the 
modulus is 2.9518 if a quarter of the circumference, or the distance 
between the limits within which the latitudes can oscillate, is unity. 
And then, having a series of 1000 trials, the median value of the 
deviation will be 
 
    90°×0.005111 = 0°27′35″.964. 
 
The limits of the deviations as compared with those for the mean 
longitude, are reduced not only because each particular value only 
varies in a four times shorter interval, but also since the modulus of 
convergence is increased. 
    72. It is easy to justify these results of calculations by a very simple 
geometric consideration. Actually, when a point on a plane or in space 
experiences a displacement z measured along a certain straight line, its 
distance from a fixed point varies less than z except when the 
displacement occurs along a radius of a circle or a sphere with that 
fixed point as its centre. It follows that in general the influence of 
chance inequalities in the distribution of points on the mean distance 
from a fixed point should lessen when the distribution on a straight 
line is replaced by a distribution on a plane, and then in space. The 
same occurs in the example of § 71: the nearer is a point to the poles of 
a sphere, the easier its light displacement alters the longitude without 
noticeably influencing the latitude. However, calculations are 
indispensible for precisely measuring the effects which are only 
vaguely discerned by geometric considerations. 
    73. A certain magnitude u can be in a known connection with 
magnitude x which takes a series of various fortuitous values in a 
succession of trials. Therefore, u can also be considered as indirectly 
obtaining the same number of fortuitous determinations. And, owing 
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to the known connection between u and x, the law of probabilities of u 
can be derived from that of x. The same holds for the limits of that 
function’s oscillations, its mean and median values, and the modulus 
of convergence. 
    Depending on that modulus being larger or smaller than the 
modulus of x, the influence of the anomalies of chance on the 
difference between the absolute mean and that provided by a series of 
fortuitous trials will be weakened or strengthened when passing from x 
to its function u. If the variations of u and x are proportional, or if u = 
b + cx, the mean value of u will correspond to the mean value of x, but 
in general this is not so. Let, for example, u = x2. Then the mean value 
of u or of x2 will always exceed the square of the mean value of x. It is 
the difference between these two magnitudes on which depends the 
value of the modulus of convergence for the variable x (§ 69, Note 5). 
On the contrary, since u invariably increases with x, the median value 
of u will necessarily correspond with the median value of x. 
    74. If (Fig. 2)          function u depends, according to a known law, 
on many magnitudes x, y, z, …, each independently one from another 
taking a fortuitous value at the same trial, we derive the law of 
probabilities of magnitude u from the laws of probabilities of those 
independent magnitudes. Also determined, although not as simple as 
before, are the limits within which it oscillates and its modulus of 
convergence.  
    In the problem considered in § 14, the function u is the difference 
(without taking into account its sign) between two magnitudes, x and y, 
each taking fortuitous values at each trial, or at each pair of joint trials. 
Both x and y can indifferently take all values between 0 and 1 and the 
function u can also take them although they are not equally probable. 
Draw a unit square OACB; each point such as m within the square or 
on its edge will have coordinates x, y and to each of such infinitely 
many points there will correspond equally probable hypotheses about 
the system of fortuitous values of those coordinates. Let 
 
    OP = OQ = a, AQ′ = AP, BP′ = BQ. 
 
    All the points of the square for which the function u takes the 
particular value a, will be situated on one of those equal and parallel 
segments PQ′ and QP′. Therefore, the probability of function u taking 
a particular value a between 0 and 1 is proportional to the lengths of 
those segments or to (1 − a), and the median value of u is 0.2928 …, 
mean value 1/3 and its modulus will be 3 (§ 70). The probability that 
the fortuitous value of u will not be less than a is equal to the ratio of 
the sum of the areas of the right triangles APQ′ and BQP′ to the area of 
the square and therefore equal to (1 − a)2. If a = 0.3, that probability 
will be 0.49, as we indicated in § 14.  
    Suppose now that the magnitudes x and y can take, as previously, all 
the values from 0 to 1 but that they are not equally probable. For 
example, their probabilities, just like in the geometric problem of § 16, 
are respectively proportional to (1 – x) and (1 – y). Imagine that the 
square OACB is a ponderable plate whose density at each point is 
proportional to the product (1 – x)(1 – y). The ratio of the sum of 
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weights of triangles APQ′ and BQP′ to the weight of the square is the 
probability that the fortuitous value of u will not be less than a. That 
ratio, by the rules of the integral calculus, is (1 – a)3[1 + a/3] or 0.3773 
if a = 0.3. 
    Let us also consider the case of u being the sum of two magnitudes 
indifferently taking all the values between 0 and 1. Then u can take all 
unequally probable values from 0 to 2. Trace, as in the previous 
example, square OACB and let OP = OQ = a. All the points of the 
square for which the function u takes the particular value a are situated 
on segment PQ whose length is proportional to the probability that u 
will take that value at least if a remains less than unity, or less than the 
side of OACB. If a > 1, or if points P and Q are situated beyond A and 
B, the probability of a becomes proportional not to the length of PQ, 
but of P′Q′ which is part of PQ intercepted by the two other sides of 
the square. It follows that the function measuring the probability of 
each value of u will be equal to u when its values are contained within 
0 and 1, and to (2 – u) when within 1 and 2. At the value u = 1 that 
function experiences what we will call discontinuity of the second 
order represented by an ordinate of line OGB broken at g and formed 
by two equal sides of a right isosceles triangle whose height Gg is 
unity and base is twice longer.  
    And now we find that the modulus of convergence for the function u 
= x + y is √3. For each magnitude x and y it is √6 (§ 70). The limits of 
the deviations proper for x and y should be increased in the ratio √2:1 
for obtaining the limits of the deviations corresponding to u. The 
values of u oscillate in a twice wider interval as compared with that 
between the extreme values of x or y, but the limits of its deviations do 
not at all reach twice those limits for x and y.  
    Constructions in space similar to those discussed in a plane serve to 
solve the possible problems about the law of probabilities of a function 
u of three variables x, y, z with known laws of probabilities and 
fortuitously taking values independently one from another. In general, 
if u is a linear function of a certain number of variables, 
 
    u = b + c1x + c2y + c3z + …,  
 
where b, c1, c2, c3, … are positive or negative constants, the mean 
value of the function u coincides with what is obtained if x, y, z, … are 
replaced by their mean values M1, M2, M3, …:  
 
    M = b + c1 M1 + c2 M2 + c3 M3 + … 
 
    If u ceases to be a linear function, its mean value will not in general 
be obtainable in that way. This is what we had remarked in § 73 about 
functions of one single variable. The case of linear functions merits, 
however, special attention because any function can be artificially 
linearized, as proved in pure mathematics, if the magnitudes on which 
they depend only experience very small variations. 
 

Notes 
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    1. Bru notes that Cournot’s Chapter 6 had been repeated (repris) by all authors of 
the 19th, and some of the 20th century. Now, repeated is certainly too strong, and why 
was not this remark inserted at the beginning of the chapter? 
    2. The term curve of probability is due to Laplace [B. B.] 
    3. This modulus occurred in Gauss (1809, § 177) as parameter h of the normal 
law: 
 

    
2 2φ( ) exp( )

π

h
h∆ = − ∆ .  

 
In § 178 Gauss called it the measure of precision. In 1823, Gauss, having rejected the 
universality of the normal law, introduced the variance as 1/2h2. Cournot ignored 
Gauss, see Note 8 to Chapter 7 and Note 7 to Chapter 11. 
    4. Formula (69.1) which Cournot denoted by (L), is due to Laplace [B. B.] 
    5. Suppose that a and b are the inferior and superior limits of the possible values 
of x and fx expresses the law of possibility [!] of those different values. Then the 
modulus of convergence will be6 
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    Function fx is necessarily subordinated to the condition 
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Three integrals 
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express respectively: the area of the curve whose ordinates represent the law of 
probabilities; the mean value M of the variable x; and the mean value of x2. And 1/g2 
is equal to twice the difference between the mean value of the square and the square 
of the mean value. In addition, 
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This means that 1/g2 is the mean of all the infinite number of values which the square 
of the difference between two values fortuitously assigned to variable x can take 
according to its law of probabilities.  
    If x, instead of taking all the infinite values between a and b only took a finite 
number of different values x1, x2, …, xn with probabilities p1, p2, …, pn, the integrals 
included in the expression of g will be replaced by sums: 
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and if p1x1 + p2x2 + … + pnxn = M, 
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    It is seen that that value of g becomes minimal and equal to  
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√2/(b – a) = √2 if (b – a) = 1 and 
 
    x1 = a, xn = b, p1 = 1/2, p2 = 0, …, pn−1 = 1/2. 

    The minimal value of 1 / 2 (1 )p p−  in formula (33.1) is also √2 corresponding 

to p = 1/2. Therefore, when fortuitously determining a large number m of particular 
values; calculating the mean value µ; separating that series in n terms smaller, and 
(m – n) larger than the median value, the deviations (1/2 − n/m) and (M − µ)/(b – a) 
will oscillate fortuitously with the same probability P between unequally spaced 
limits. The interval between the limits of the first deviation will always be larger than 
the second one. 
    It is also evident that g has no maximal value. If one of the limits a and b or they 
both is/are infinite, the second integral (69.2) can become infinite but the first one 
will still be unity. Then, strictly speaking, the absolute mean M to which the mean µ 
can converge as m ever increases does not exist. If the first and the second integral 
(69.2) remain finite, the third can still become infinite, and then, strictly speaking, 
the modulus of converging will not exist. We do not consider here the various 
singular cases possibly occurring in the applications of those formulas. 
    Generally 
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is the probability that the deviation (M − µ) is contained within the limits ± l 
determined by equation (69.1). This formula proved in mathematical treatises is 
reputedly exact to within magnitudes 1/m but actually much more precise.  
    For illustrating this, suppose that all the values of x are equally probable. Then6 
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For the sake of brevity denote (M + l)/(b – a) = α, (M − l)/(b – a) = β and terminate 
each series when the appropriate term is not positive anymore. Let (b – a) = 1, M = 
0.5 and l = 0.1, then even for m = 10 that expression becomes 2,585,698/3,268,800 = 

0.71255. For the same numerical values t = 3/5 =0.7746 and our table provides 
the corresponding P = 0.7266 … The difference is less than 0.015 although we could 
have feared, if strictly keeping to the usual derivation, that the difference will amount 
to one or many tenths which would have rendered the approximate formula illusory. 
It can be safely thought that for m = 100 the error will be quite negligible. A. A. C. 
    6. Bru referred to Poisson (1829; 1837, § 102) and remarked that Cournot had 
actually introduced an example of the Schwarz – Buniakovsky inequality which goes 
back [indirectly] to Laplace (1812/1886, p. 316). 
    7. This formula is due to Lagrange, 1776, and occurred in Laplace (1812/1886, p. 
260) and Poisson (1837, § 110) who attributed it to Laplace. [B. B.]  
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Chapter 7. On the Variability of Chances 
    75. Until now, we have supposed that during the repetition of the 
trials the chances of the same event did not change. This hypothesis is 
underlying the theorem of Jakob Bernoulli, see Chapter 3, and the 
rules of the convergence of the mean values (Chapter 6). However, in 
general the chances of the same event change according to their nature 
from trial to trial or from one of their series to another if accomplished 
under other circumstances and by other instruments1. For example, 
when tossing a coin, the probability of the appearance of heads is not 
strictly equal to 1/2 because of the coin’s irregular structure which is 
always necessary to suppose. It does not change during successive 
trials if always tossing the same coin when other circumstances, such 
as the density and the velocity [?] of the air, remain the same. 
    However, when the coin is changed from one trial to another, the 
probability of the appearance of heads will also change. Assuming that 
all the available coins are perfectly identical the probability will 
[nevertheless] change from one series to another if the applied coins 
were differently minted. When always applying the same coins they 
will wear so that by the end of a series heads can experience 
progressive variations and acquire an essentially different value as 
compared with the beginning of the series. 
    What we say about an event insignificant in itself which can only 
become useful as a result of a conditional consent, but it is applicable 
to fortuitous natural and social economic phenomena of great 
importance. It is therefore essential to examine how the laws of 
probability are modified owing to the variability of chances. 
    76. Suppose that there are n urns with white and black balls in 
various proportions. In n1 of them the probability of drawing a white 
ball is p1, in n2 of them, p2 etc. At first we suppose that at each trial an 
urn is chosen by chance and a ball randomly extracted from it. The 
probability of obtaining a white ball is calculated by the rules of 
compound probabilities (§ 23) and it evidently does not change from 
trial to trial. The probability of choosing an urn of the first kind is n1/n 
and n1p1/n is the probability of the compound event. Therefore, the 
probability of extracting a white ball from some urn is 
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... ...
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n p n p n p n p
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n n n
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    In other words, it is the arithmetic mean (§ 67) of the probabilities 
of that event. If the extracted ball is each time replaced in the 
appropriate urn which is then inserted by chance among the other urns, 
it does not change from one trial to another2. Nothing should be 
therefore changed in the law of probability as it was described above, 
suffice it to understand that the fraction p instead of denoting a 
magnitude constant for a given urn, is now a mean of the probabilities 
varying from one urn to another. 
    77. I will, however, adduce a useful remark. In § 33 we saw that for 
the same number of trials and the same probability P the fortuitous 
deviation (p – w) will be contained within the limits ± l, and that the 
value of l varied proportionally to the square root of p(1 – p) at least 
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when the number m of the trials was not less than several hundred. We 
have applied this hypothesis owing to the simplicity that it introduces 
in the calculations and the exposition of the theory. 
    [For the sake of brevity we denote] n1/n = k1, n2/n = k2, … Then  
 
    p(1 – p) = (k1p1 + k2p2 + …)(1 − k1p1 − k2p2 − …). 
 
Carry out the multiplication on the right side, replace k1

2 by 
 
    k1(1 – k2 – k3 − …), 
 
substitute similar expressions instead of k2

2, k3
2 …, then  

 
    p(1 – p) = k1p1(1 − p1) + k2p2(1 − p2) + … +  
    k1k2(p1 − p2)

2 + k1k3(p1 − p3)
2 + …                                 (77.1) 

 
    This proves that always  
 
    p(1 – p) > k1p1(1 − p1) + k2p2(1 − p2) + …,                    (77.2) 
 
i. e. that the value of the product p(1 – p) where p is a mean value, 
always exceeds the mean of the values of that product for each urn in 
particular. In addition, by virtue of the principle that a mean of squares 
always exceeds the square of the mean value (§ 73), we have another 
inequality which is also easy to verify,  
 
    k1p1(1 − p1) + k2p2(1 − p2) + … >    

    2
1 1 1 2 2 2[ (1 ) (1 ) ...] .k p p k p p− + − +   

 
Then, all the more 
 

    p(1 – p) > 2
1 1 1 2 2 2[ (1 ) (1 ) ...]k p p k p p− + − + , 

 

    (1 )p p− > 1 1 1 2 2 2(1 ) (1 ) ...k p p k p p− + − +  

 
    Denote by l1, l2, … the new values of l corresponding to the same 
values of m and P and p replaced successively by p1, p2, … The 
previous inequality will be equivalent to 
 
    l > k1l1 + k2l2 + … 
 
and we can therefore maintain that the value of the limit l that 
measures the influence of the anomalies of chance exceeds the mean 
of the values l1, l2, … in case the same number of trials is made with 
each urn. It is even possible that l exceeds the largest of those values. 
    78. Suppose now that the urns are not anymore selected by chance 
but that for m1 trials we choose an urn from those having probability p1 
of drawing a white ball, for m2 trials, an urn from those having 
probability p2 of the same event etc3. As before, the total number of 
trials is  
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    m = m1 + m2 + … 
 
    Calculations show that the ratio w of the number of the extracted 
white balls to the total number m of them converges to 
 
    p = m1p1/m + m1p1/m + …                                  (78.1) 
 
or to the mean of the probabilities of drawing a white ball from each of 
the selected urns. And we have probability P that the difference  
(p − w) is contained within the limits ± l such that l is connected with t 
(§ 33) and therefore with P by the formula 
 

    1 1 1 2 2 22[ (1 )/ (1 )/ ...].t l m m p p m m p p m= ÷ − + − +   

 
    These consequences take place if m is a sufficiently large number 
and (what is very important to note) when each of the numbers m1, m2, 
… making up the large number m is small or even reduced to unity4. 
The anomalies of chance are then compensated not within each 
particular series, but in the total series. 
    Suppose for a moment that the numbers m1, m2, … are proportional 
to n1, n2, … considered in the assumption made in §§ 76 and 77. Then 
 
    m1p1(1 − p1)/m + m2p2(1 − p2)/m + … = k1p1(1 − p1) + k2p2(1 − p2) + … 
 
so that the inequality (77.2) will indicate that for the same value of m 
the anomalies of chance are contained in limits narrower than before. 
This can be known in advance without calculations. Actually, if the 
selection of the urns is fortuitous, with an increasing number of trials 
the numbers µ1, µ2, … of the chosen urns of the first, second, … kind 
tend to become proportional, respectively, to the numbers n1, n2, … 
and, in addition, the ratio w converges to the value of p defined by 
equation (78.1). Therefore, the influence of the anomalies of chance 
will decrease if for some reason governing the selection of the urns the 
numbers µ1, µ2, … will become equal to m1, m2, … and consequently, 
by the assumption made, will be strictly proportional to the numbers n1, 
n2, … 
    According to the hypothesis of a fortuitous selection of urns, the 
ratio w which converges to the value (n1p1 + n2p2 + …)/n or to the 
mean of the probabilities of extracting a white ball from all the urns, at 
the same time converges to (µ1p1 + µ2p2 + …)/m or to the mean of the 
values of probabilities of extracting a white ball from the m actually 
applied urns. If m becomes ever larger, these two means tend to, but 
never strictly coincide. Common sense tells us that the random 
difference between w and the second mean should oscillate (with the 
same probability) within narrower limits than the random difference 
between the same ratio and the first mean. This statement assumes that 
 
    p(1 – p) > µ1p1(1 – p1)/m + µ2p2(1 – p2)/m + …  
 
or that (§ 77) 



 75 

 
    k1p1(1 – p1) + k2p2(1 – p2) + … >  
    µ1p1(1 – p1)/m + µ2p2(1 – p2)/m + …                                  (78.2) 
 
This inequality can be verified5. 
    79. The third hypothesis which we should consider consists in that 
the numbers m1, m2, … are fixed in advance but that the urns to be 
applied in the first, the second, … series are selected by chance6. 
Assume also, for avoiding excessive complications of formulas, that 
m1 = m2 = … so that m =im1 where i is the number of the partial series. 
The ratio w will converge to 
 
    p = (n1p1 + n2p2 + …)/m 
 
just as under the first hypothesis but less rapidly. 
    The limit of the deviation and the probability P will be connected by 
means of a supplementary magnitude t according to a remarkable 
equation (Bienaymé 1839) which we will provide in the form 
 

   2 2
1 1 1 2 22{ (1 ) ( 1)[ ( ) ( ) ...]}.t l m p p m k p p k p p= ÷ − + − − + − + (79.1) 

 
    If m1 = 1 we return, as it should have been, to the formula taking 
place under the first hypothesis. The factor in the square brackets 
 
    k1(p – p1)

2 + k2(p – p2)
2 + …                                                 (79.2) 

 
is certainly positive. It expresses the mean of the squares of the 
differences between each of the probabilities p1, p2, … and their mean 
p. If that factor is a very small fraction, for example 1/10,000, m1 can 
be of the order of tens or hundreds without l (for the same P) being 
appreciably altered when passing from the first to the present 
hypothesis. However, in general that factor (79.2) is a fraction 
comparable with p(1 – p) so that the value of l will considerably 
increase due to that passage. For small values of m1 such as 10 or 12 
and with m remaining a very large number, it easily trebles. This 
occurs all the more if m1 is a large number; the fraction p(1 – p) will 
generally become negligible as compared with the product of the 
factor (79.2) by (m1 − 1). The radical in formula (79.1) instead of 

being of the order of √m, in general has order 1/m m or √i.  

    For narrowing the interval between the limits of the anomalies of 
chance it is necessary that both the total number m of trials and the 
quotient i, or the number of the partial series, are large. Instead of 
supposing that m1 = m2 = …, or even that they are unequal but 
assigned in advance by causes not at all accidental, we may assume 
that the number of trials constituting the first, the second, … series is 
determined fortuitously with the total number m of trials remaining the 
same. If chance enters the choice of the urn or the group of urns for 
each partial series, it will be its second intervention. Then, the chance 
inherent in the extraction of the balls is its third appearance. Common 
sense indicates, without calculations whose complications necessarily 
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ever increase, that the more systems of fortuitous trials are interlocked, 
the more considerable are the anomalies of chance that corrupt the 
final result. We should increase the total number of trials, or in our 
example the total number of drawings from which the final system is 
constituted, for including these oscillations in the same limits with the 
same probability. 
    80. Generally, let us admit that there are n urns subdivided into 
groups of n1, n2, … urns with probabilities of extracting a white ball 
being p1, p2, … A first long series of m(1) trials is made, but the system 
of causes, whether random or not, acts in such a way that the numbers 
m1

(1), m2
(1), … are not proportional to n1, n2, … denoting respectively 

the number of drawings made from an urn belonging to the first, the 
second, … group. Therefore, the ratio w(1)for the series of m(1) trials 
very little differs from the mean  
 
    p(1) = (m1

(1)p1 + m2
(1)p2 + …)/m(1) 

 
but can appreciably differ from the mean p found with a good 
approximation according to the hypothesis of § 76. 
    When making a second series of m(2) trials, with the system of 
causes influencing the selection of urns fortuitously or not, we will 
find that some ratio w(2) will very little differ from the mean 
 
    p(1) = (m1

(2)p1 + m2
(2)p2 + …)/m(2). 

 
Here, m1

(2), m2
(2), …are similar to m1

(1), m2
(1), … This mean can 

appreciably differ from both means, p(1) and p. 
    However, when having a very large number of similar series all the 
accidental and irregular in the causes that jointly acted in selecting the 
urns will be compensated and therefore lacking and the mean  
 

    
(1) (1) (2) (2)

(1) (2)

...

...

m w m w

m m

+ +

+ +
  

 
will converge to a certain fixed limit, and to p if all the causes 
determining the selection were purely fortuitous. Suppose that the 
chances which, taken together, determined the selection, are rigorously 
defined, then we can in advance (without the complications of 
calculation) assign the number of partial series m(1), m(2), … each 
consisting of a large number of trials, which should be obtained for 
arriving at an appropriately fixed mean approximately equal to p. But 
if the conditions of the selection or of the extractions of the balls 
progressively change in time, the derivation of an appropriately fixed 
mean will not be always possible. 
    81. Similar remarks are applicable to the laws of probability defined 
in Chapter 6 and to the mean values derived from them. Suppose, just 
like in § 71, that an equator, the poles, meridians and parallels are 
traced on an appreciably spherical globe. Throw it fortuitously and 
mark the longitude and latitude of the points of its contact with the 
earth. Each of these coordinates, the latitude for example, is a 
magnitude taking infinity of values between certain limits. For a 
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strictly spherical and homogeneous globe the law of probabilities of 
these values is easily assigned, but in general it depends on its form 
and internal structure and varies from one globe to another. 
    Suppose that we have a large number of randomly collected globes 
and trials are successively made with a globe each time fortuitously 
chosen rather than with the same one. Let n1, n2, … be the number of 
globes for which the probability of value x [?] is proportional to 
function f1x, f2x, … and n = n1 + n2 + … is the total number of the 
globes. In each trial the probability of x resulting from the selection of 
the globe and its fortuitous throw is proportional to  
 

    1 1 2 2 1 1 2 2

1 2

... ...
.

...

n f x n f x n f x n f x
fx

n n n

+ + + +
= =

+ +
  

 
    In other words, it is the arithmetic mean of the probabilities of that 
value for each globe. By tracing the curve of probabilities for each 
globe we will obtain the ordinate fx of the mean curve of probabilities 
by matching each abscissa to the mean of all the corresponding 
ordinates. 
    A median value and a mean value (§§ 67 and 68) correspond to each 
of the functions fx, f1x, f2x, …, but there is no simple relation or a 
general formulation connecting the median value of fx with those 
proper for functions f1x, f2x, … However, denoting by M, M1, M2, … 
the mean values for fx, f1x, f2x, …, we have  
 

    1 1 2 2

1 2

...

...

n M n M
M

n n

+ +
=

+ +
  

 
so that M is the arithmetic mean of the values M1, M2, … repeated as 
many times as there are globes to which they correspond.  
    82. By calculations similar to those of § 77, we find that the value of 
the modulus of convergence for the mean function fx is smaller than 
the mean of those moduli for each applied globe7. It can even happen 
that the value of that modulus is smaller than the minimal modulus of 
the different particular forms of that function.  
    Denote by l the limit of the difference between the veritable mean 
and the mean resulting from the m trials made with fortuitously chosen 
globes and by l1, l2, … the limits of equally probable differences when 
the trials are successively made with a globe from the first, the second, 
… series. Then it follows that 
 

    1 1 2 2

1 2

...
.

...

n l n l
l

n n

+ +
>

+ +
  

 
    83. A second hypothesis corresponding to that introduced in § 78, 
consists in supposing that the selection of the globes is not anymore 
fortuitous, but made by non-random causes or by their combination 
with fortuitous causes. The series of m trials consists of m1, m2, … 
trials made with globes for which the law of probabilities is f1x, f2x, … 
Then the mean resulting from the m trials will converge to the value 
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    (m1M1 + m2M2 + …)/m 
 
very little differing from it if m is a large number, even if m1, m2, … 
decrease until unity. The modulus of convergence becomes8 
 

    1 2
2 2
1 2

1 ...
m m

mg mg
÷ + +   

 
and, assuming that the numbers n1, n2, … are respectively proportional 
to m1, m2, …, exceeds the modulus obtained under the previous 
hypothesis. Nevertheless, we always have  
 

    1 1 2 2

1 2

...
.

...

m l m l
l

m m

+ +
>

+ +
 

 
The values of l, l1, l2, … and the meaning of this inequality were 
indicated above clearly enough9. 
    84. After the statements of § 79 it is understandable that if some 
cause has fixed in advance the numbers m1, m2, … and the globes to be 
applied in the series (m1), (m2), … are selected fortuitously, the mean 
resulting from the trials converges to the value M just like under the 
hypothesis of a fortuitous selection for each isolated throw, even when 
m1, m2, … are very small numbers, but notably slower. Otherwise a 
large m is not sufficient for the anomalies of chance to be contained 
within narrowly spaced limits; it is then necessary for each of the 
partial series (m) to include a large number of throws. 
    85. So as to formulate now the most general hypothesis, imagine a 
combination of many series composed of very large numbers of trials 
m(1), m(2), … The causes, whether fortuitous or not, which determine 
the selection of globes vary from one series of trials to another so that 
the numbers m1

(1), m2
(1), … express how many globes of the first, the 

second, … kind were applied in the first series, whereas the numbers 
m1

(2), m2
(2), … express the same numbers pertaining to the second 

series etc. None of these numbers supplied with super- and subscripts 
ought to be of a certain order of magnitude, some can be reduced to 1 
or even to 0. The means derived from the first, the second, … series of 
trials very little differ from, respectively,  
 

    (1) (1) (1) (2) (2) (2)
1 1 2 2 1 1 2 2( ...)/ ,  ( ...)/ ,...m M m M m m M m M m+ + + +   

 
but they can appreciably differ one from another, and all of them can 
appreciably differ from the mean M. However, compensation in a large 
number of similar series will remove all the accidental and irregular in 
the selection, so that, denoting by µ (1), µ (2), … the means resulting 
from the first, the second, … series, the general mean  
 

    
(1) (1) (2) (2)

(1) (2)

µ µ ...

...

m m

m m

+ +

+ +
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converges to a fixed limit coinciding with M if the selection is purely 
fortuitous. It should be borne in mind that if the conditions of selection 
or extraction [?] experience progressive variation in time, it can 
happen that, whichever is the number of the partial series m(1), m(2), … 
composing a total series, we will never arrive at an appreciably fixed 
mean.  
 

Notes 
    1. In his correspondence with Jakob Bernoulli, Leibniz referred to changes in 
various circumstances and thus objected to stochastic reasoning. That problem was 
studied by Poisson and Bienaymé and originated later developments. [B. B.] 
Bernoulli answered Leibniz without naming him at the end of Chapter 4 of pt. 4 of 
his Ars Conjectandi: [R]esume observations with the pebbles if it is assumed that 
their number in the urn is variable. O. S. 
    2. Poisson (1837, § 55) did not agree. [B. B.] 
    3. That pattern was studied by Laplace (1812/1886, pp. 430 – 431) and Poisson 
(1837, § 94). [B. B.] 
    4. Poisson (1837, § 95) indicated an exception. [B. B.] 
    5. The magnitude 
 
    k1p1(1 − p1) + k2p2(1 − p2) + …                                          (78.3) 
 
is the absolute mean of the function p(1 – p). For large values of m it should very 
little differ from 
 
    µ1 p1(1 − p1)/m + µ2 p2(1 − p2)/m + …                               (78.4) 
 
which is provided by the m fortuitous trials. At least if the magnitude 
 
    k1k2(p1 − p2)

2 + k1k3(p1 − p3)
2 + … 

 
is not very small, this should lead to inequality (78.2). However, in that other case 
the modulus of convergence of the function p will be very large, see my Note 5 in 
Chapter 6, as obviously that modulus of p(1 – p). This circumstance will even more 
decrease the difference between the magnitudes (78.3) and (78.4) but the inequality 
(78.2) will still be preserved. A. A. C. 
    6. The third hypothesis is due to Bienaymé (1839) whom Cournot followed. 
However, the latter considered a similar pattern in 1834. [B. B.] 
    7. Suppose, just like in § 77, for shortening the calculations, that 
 
    n1/n = k1, n2/n = k2, … 
 
so that  
 
    fx = k1f1x + k2f2x + … 
 
Then, by the formulas in my Note 5 to Chapter 6,  
 

    
2 2

1 1 2 22

1
...

2

b b

a a

k x f xdx k x f xdx
g

= + + −∫ ∫   

    
2

1 1 2 2 [ ...] .
b b

a a

k x f xdx k x f xdx− + +∫ ∫  

 
    Expand the right side of this equation and replace k1

2, k2
2, … respectively by  

 
    k1(1 − k2 – k3 − …), k2(1 − k1 – k3 − …), … 
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Then, denoting by g1, M1, g2, M2, the analogues of g, M, we find for each function f1, 
f2, … 
 

    
2 21 2

1 2 1 2 1 3 1 32 2 2
1 2

1
... ( ) ( ) ...

2 2 2

k k
k k M M k k M M

g g g
= + + + − + − +   

 
    Therefore,  
 

    1 2
2 2 2

1 2

1
...

k k

g g g
> + +  

 
However, according to the principle that the mean of squares always exceeds the 
square of the mean value (§ 73),  
 

    
21 2 1 2

2 2
1 2 1 2

... [ ...]
k k k k

g g g g
+ + > + +  

 
and the more so 
 

    1 2
1 1 2 2

1 2

1
...,  ...

k k
l k l k l

g g g
> + + > + +  

 
    From the last but one inequality it follows that 
 

    1 1 2 21 [ / / ...]g k g k g< ÷ + + ,  

 
but on the other hand 
 

    1 1 2 2 1 1 2 21 [ / / ...] ...k g k g k g k g÷ + + < + +  

 
since that last inequality can be written as 
 

    
2 2

1 2 1 2 1 3 1 3

1 2 1 3

( ) ( )
... 0

k k g g k k g g

g g g g

− −
+ + >   

 
and the more so 
 
    g < k1g1 + k2g2 + …                                                                      A. A. C. 
 
    8. That the variance of a sum of independent random variables is equal to the sum 
of the variances is due to Gauss (1823, § 15). The modulus is evidently that of the 
mean globe. [B. B.] 
    9. Letter l denotes the limit of the difference between the veritable mean and the 
mean resulting from the m trials and l2 = ∑(mi/m)li

2. [B. B.] 
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Chapter 8. Posterior Probabilities 
    86. For random events whose conditions are not determined by man, 
the causes providing them certain chances or determining the law of 
probabilities of the various values of a variable magnitude, are almost 
always either of an unknown nature and manner of acting, or so 
complicated that it is impossible to analyze them rigorously or subject 
them to calculation. Even in games in which everything is of human 
convention and invention, the construction of the instruments of 
chance is prone to irregularities and the influence of the modification 
which they impart on chances is impossible to evaluate in advance.  
    When throwing a homogeneous die whose rectangular [?] faces are 
not strictly equal [congruent], the required chances of the arrival of 
each of them, although seemingly a very simple problem of mechanics 
with all its conditions being strictly defined, can not be determined 
given the present state of mathematical analysis. And in games in 
which probabilities only depend on a purely arithmetical enumeration 
of combinations without any influence of mechanical or physical 
conditions, the solution of the arithmetic problem can still exceed the 
power of analysis. Suppose for example that it is required to determine 
the advantages of the main in piquet or of dé in trictrac1, or 
establishing the probability that the gambler having them wins the set 
[…]. This demands such an inextricable enumeration of chances which 
no existing procedure of calculation can ensure.  
    It is therefore really necessary for the application of the theory of 
chances to be able to ascertain posteriorly by experience those chances 
whose direct determination actually and evidently exceeds the powers 
of calculation. From all said until now it follows that the principle of 
Jakob Bernoulli leads to such an experimental determination. Indeed, 
denote by x the unknown chance of the arrival of an event, and by n, 
the number of its appearances in m trials. It will then be always (§ 33) 
possible to obtain a probability P, such that the fortuitous difference  
(x − n/m) is contained within limits ± l; if only numbers m and n are 
sufficiently large, the number l and the difference (1 – P) will be less 
than any assignable magnitudes. It is clear that, if nothing restricts the 
number of trials, the probability x can be determined with an arbitrary 
precision. It is possible, for example, to become sure that the 
difference between the ratio n/m given by experience and the unknown 
x will be less than 1/100,000. The existence of a larger difference, 
although possible in a strict sense, will be an event of the kind 
reasonably reputed as physically impossible, so that we may disregard 
it when describing various phenomena (§ 43). 
    By issuing from the Jakob Bernoulli theorems [?] whose sense and 
importance their inventor had perfectly well understood, we are now 
able to pass immediately to the applications which they enjoy in the 
sciences of facts and observation. However, a rule first announced by 
the Englishman Bayes on which Condorcet, Laplace and their 
followers wished to construct a doctrine of posterior probabilities 
became a source of many ambiguities which should first be cleared up, 
and grave errors which should be rectified. They are rectified now that 
we recognize the spirit of the fundamental distinction between 
probabilities existing objectively and measuring the possibility of 
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things, and subjective probabilities relative partly to our knowledge 
and partly to our ignorance and varying from one mind to another 
depending on their capacities and the information provided them (§ 
46). 
    87. Imagine three groups of urns containing balls, 3 white balls in 
each urn of the first group, 2 white balls and 1 black ball, and 1 white 
ball and 2 black balls in urns of the other two groups2. All groups 
consist of the same number of urns. An urn is selected by chance and a 
white ball fortuitously extracted from it. It is required to determine the 
probabilities that that urn belonged to one of those groups.  
    The probability of selecting an urn from the first group is 1/3, and 
then the drawing of a white ball is certain. For the other groups these 
probabilities are 1/3 and 2/3, and 1/3 and 1/3. Therefore, the prior (§§ 
20 – 23) probability of the extraction of a white ball is 
 
    1/3·1 + 1/3·2/3 + 1/3·1/3 = 2/3. 
 
Denote by A1, A2, A3 the events consisting of extracting a white ball 
from an urn of those groups. After repeating the described procedure a 
large number m of times, the number of those events will appreciably 
be m/3, 2m/9 and m/9.  
    Three gamblers could have bet that the white ball will be extracted 
respectively from an urn of those groups and agreed to disregard 
arrivals of a black ball. Their stakes should be fixed in the proportion 
of 3:2:1 not at all because, being ignorant of the particular causes that 
determine the random event, there is no reason to fix them otherwise, 
but since the chances of their gain are in that proportion. This, as we 
will explain, becomes manifest after a long series of trials.  
    88. On the contrary, if a white ball is extracted under the same 
conditions but it is not known from which urn, the three gamblers 
should regulate their stakes the same way. Their probabilities of 
gaining (and probability is here applied in the objective sense as 
equivalent to possibility) are respectively proportional to those 
numbers. Therefore, if the same bets were repeated many times under 
the same circumstances the number of sets gained by the gamblers will 
be approximately in the same proportion of 3:2:1.  
    It is in this sense that the rule attributed to Bayes (1764)3 should be 
understood. It can be thus formulated:  
    Probabilities of causes or hypotheses are proportional to the 
probabilities that these causes provide to the observed events. The 
probability of one of these causes or hypotheses is a fraction whose 
numerator is the probability of the event being due to that cause and 
the denominator, the sum of such probabilities relative to all the 
causes or hypotheses. 
    In our example, the cause or the previous event was the selection of 
an urn from the three groups. The subsequent and observed event, i. e. 
the extraction of a white ball previously had different probabilities 
depending on the selected urn to belong to one or another group. Thus 
understood, the Bayes rule is a theorem which can not lead to any 
ambiguities and whose truth can not be contested. 
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    89. Suppose now that an urn is taken from many of them, each 
containing 3 balls, white or black. The ratios of the balls of the two 
colours is unknown; also unknown is the ratio of urns containing only 
white balls to the total  number of urns, etc and neither is it known 
whether the selection of urns is fortuitous or influenced by non-
random causes. 
    Suppose also that a white ball was fortuitously extracted from an 
urn and that gambler A1 bets that that urn only contained white balls, 
gambler A2, that it contained 2 white balls and 1 black ball, and 
gambler A3, 1 white ball and 2 black balls. It is required to determine 
how their stakes should be regulated. 
    Before selecting the urn 4 hypotheses could have been formulated 
about its contents: 1) 3 white balls; 2) 2 white balls and 1 black ball; 3) 
1 white ball and 2 black balls; and 4) 3 black balls. According to the 
conditions of the problem there is no reason to prefer one of them 
rather than another. Three cases correspond to each of them, and, when 
issuing from the formulated question, there was no reason to prefer 
one of them rather than another. The observed event excluded the 
fourth hypothesis with its 3 cases; it also excluded 2 out of 3 cases of 
the third hypothesis and 1 out of 3 of the second. Only 6 cases 
remained with no reason to prefer one of them rather than another, 
three of them corresponding to the first hypothesis favour A1, two 
corresponding to the second favour A2, and one corresponding to the 
third favours A3. The gamblers’ stakes should therefore be regulated 
by the ratio 3:2:1.  
    However, when declaring that the probabilities of gaining are in that 
ratio and when the Bayes rule is understood in that sense, the term 
probability will be purely subjective, variable from one individual to 
another depending partly on their knowledge and partly on their 
ignorance. This meaning does not at all signify that in a large number 
of similar betting the number of sets gained by the three gamblers will 
approximately be in the ratios of 3:2:1. It can happen that gambler A1, 
for example, will invariably lose which invariably takes place if the 
urn at each trial is selected from a group with no urns having only 
white balls […]. 
    The Bayes rule thus applied for determining subjective probabilities 
can only be useful for fixing the stakes when some hypothesis is about 
things both known and unknown to the arbiter. It leads to unjust fixing 
if the arbiter knows more than supposed about the real conditions of 
the random trial4. 
    90. Return to the hypothesis of § 87 and suppose that after selecting 
an urn and extracting a white ball it is required to determine the 
probability of extracting another such ball. The first ball is returned to 
the urn so that the conditions of both trials are the same. We saw that 
after the first drawing the probabilities of the three possible hypotheses 
about the content of the urn are 3/6, 2/6 and 1/6. The respective 
probabilities of extracting a second white ball under these hypotheses 
are 1, 2/3 and 1/3. Therefore5, 
 
     3/6 + 2/6·2/3 + 1/6·1/3 = 7/9 
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is the probability of extracting a second white ball and probability is 
here understood in its objective sense. Randomly select a very large 
number of urns and each time consecutively extract two balls from the 
chosen urn. Count the number m of first trials resulting in the drawing 
of a white ball and the number n of those among these m trials in 
which the second trial also resulted in an extraction of a white ball. 
Then the ratio n/m will little differ from 7/9. 
    However, suppose that under the hypothesis of § 89, after the 
extraction of the first white ball, two gamblers bet on the appearance 
of a white and a black ball respectively at the second trial. Their stakes 
should be justly regulated at a ratio of 7:2 but only because of the 
hypothesis about known and unknown things in the conditions of the 
random trial. Indeed, those conditions can be such that either the 
gambler betting on a black ball will invariably lose or in a large 
number of similar bets the ratio of the numbers of gained bets to those 
gained by his adversary can very much differ from 2:7. 
    91. In ordinary applications of the Bayes rule absolutely nothing is 
known about the contents of the urn and it is admitted that the chances 
possibly vary continuously, or, in other words, that the urn contains an 
infinity of balls and that the ratio of the number of white balls to the 
total number of balls can take all the values, infinitely many of them, 
contained between 0 and 1. In advance, all these values have equal and 
infinitely low probabilities. The extraction of a white ball assigns 
another law of probabilities to these values (§ 65) but the probability 
of each particular value remains infinitely low.  
    Just like in the second example of § 70, the curve of probabilities is 
a segment passing through the origin of coordinates at the angle to the 
x-axis having tangent 2. The mean value resulting from that law of 
probabilities is 2/3, and it precisely expresses the probability of an 
appearance of a white ball in the next drawing from the same urn. The 
median value is 1/√2 = 0.7071. […] A bet of 3:1 can be taken on the 
chance of that event to exceed 1/2 or on the urn containing more white 
balls than black ones.  
    92. More generally, if in m drawings with replacement made from 
the selected urn there appeared n white and (m – n) black balls the 
ordinate of the curve of probabilities will be expressed by the fraction 
 

    
(1 )n m n
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x x
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with x being the value of the chance of extracting a white ball.  
    The curve of probabilities passes through the origin and touches the 
x-axis once more at point x = 1. The maximal ordinate OK = n/m, the 
mean value, also expressing the probability of extracting a white ball 
in the next drawing is6  
 
    OG = (n + 1)/(m + 2)  
 
which is smaller than OK if n > m – n, and the median value is 
situated between OG and OK. 
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    93. All these results should be understood in the objective sense 
applicable for measuring the possibility of events if the urn is indeed 
fortuitously selected from infinity of other urns so that the probability 
of choosing an urn for which the chance x of extracting a white ball 
does not change with x. However, otherwise and in ordinary 
applications these results can only lead to arbitrary regulating the 
conditions of a bet without knowing the real circumstances of a 
fortuitous trial. But still in most cases in which these circumstances are 
unknown we sufficiently understand their nature for avoiding the 
temptation to regulate the stakes of a bet by the abovementioned rules 
based on the Bayesian principle. 
    Suppose that we have a pile of recently minted coins. Select 
randomly one of them, and toss it. Heads appeared but we will not bet 
2:1 on the appearance of heads in a toss of another randomly chosen 
coin. However, if someone takes such a bet and repeats it many times 
under the same circumstances, he will not at all gain 2/3 of his bets. 
Indeed, although certainly varying a bit from coin to coin because of 
the irregularities of their physical structures, for any coin the 
probability of throwing heads can not differ much in either direction 
from the fraction 1/2. In that case, it will therefore be contrary to our 
notion about the conditions of chance to attribute indifferently all the 
values from 0 to 1 to the prior chance of throwing heads.  
    We know absolutely nothing about the chances of each woman to 
conceive a child of one or another sex; these chances certainly vary 
from one of them to another. We only know the mean values of these 
chances as derived from the statistical results of a very large number of 
births. If a woman gave birth to a boy, we should in our ignorance 
perhaps regulate the bets of two gamblers on the birth of a boy or a girl 
after the second pregnancy by the ratio 2:1. However, that regulation 
only motivated by our ignorance has no relation to the real chances of 
the two events.  
    If the same bet is repeated many times under similar circumstances, 
the ratio of the bets gained by the gamblers will, to all appearances, 
much differ from 2:1. To find out a value with good approximation, it 
is necessary to study the registers of the certificates of birth and to 
establish how many times a birth of a firstborn boy was followed by 
births of a second boy or a girl. As far as we know, that interesting 
research had not yet been done7; and, for the time being, the 
application of the Bayes rule as we saw only leads to futile and 
illusory consequences. Nevertheless, such poorly based applications 
are fearlessly made to problems essentially interesting for the society 
and morals like those relating to judicial decisions and testimonies and 
thus leading to aberrances unbecoming of eminent geometers8. 
    94. If successive drawings are made not from the same urn but from 
urns each time fortuitously selected from the same group, the problem 
does not change, but the letter x will denote (§ 76) the mean chance of 
extracting a white ball from that group of urns. If the conditions of 
selecting change from trial to trial according to an unknown law, 
nothing can be concluded about future events given the observed 
events. Condorcet provided and discussed at length absolutely illusory 
formulas pertaining to that case. 
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    95. When the numbers m and n from § 92 are very large, the points 
K and G will appreciably coincide and the result obtained by the Bayes 
rule will not anymore essentially differ from that following from the 
Jakob Bernoulli theorem. And this should certainly happen because the 
verity of that theorem is independent from any hypothesis about the 
previous selection of the urn. It is not as though (as many authors 
apparently imagined) the Bernoulli rule becomes exact when it 
approaches the Bayes rule; on the contrary, the latter becomes exact 
and acquires its lacking objective value9 by coinciding with the former. 
    Let us delve in pertinent details seemingly delicate or even trivial 
but demanded by the importance of the subject. Given an extraction 
from an urn of n white balls in m drawings the Bayes rule provides a 
certain probability P that the chance x of the appearance of a white ball 
is contained within the interval  
 
    [n/m – l, n/m + l].                                                               (95.1)  
 
Here, l is a magnitude, ever decreasing for the same value of P when m 
and n increase and can finally become smaller than any given 
magnitude.  
    Suppose that Kk is the maximal ordinate of the curve of 
probabilities and KI and KL, ordinates on both sides of Kk such that 
KI = KL = l. Then the probability P is represented by the ratio of the 
area of the figure between KI, KL, the x-axis and the curve of 
probabilities to the area of the figure below that curve10.  
    If the chance of selecting an urn for which the chance x of extracting 
a white ball does not change with x, probability P will have an 
objective value. In other words, if after fortuitously selecting an urn 
and extracting from it n white balls in m drawings, I decide that the 
chance x of drawing a white ball from that urn is contained within the 
interval (95.1) and if I repeat the same judgement after a large number 
N of similar results obtained with the same number of different urns, 
the ratio of the number of correct judgements to that of mistaken 
judgements, will be approximately equal to P/(1 – P). And, once more 
in other words, (1 – P) precisely measures the chance or the possibility 
of an error inherent in the first judgement.  
    However, in general this will change if the chance of selecting an 
urn varies with the value of x for that urn. Represent the law of 
probabilities of the values of x when the urn is selected by curve  
o′k′b′ (Fig. 3),               the law according to which actually varies the 
chance of selecting the urn for which x denotes the ratio of the number 
of white balls to the total number of balls. Let the lengths of OI′, OK′ 
and OL′ be equal respectively to n/m − l, n/m, n/m + l. Suppose also 
for the sake of definiteness that the ordinate K′k′ is minimal. The 
chance to draw exactly n white balls in m extractions is the feebler the 
more the value of x for the selected urn deviates from OK′.  
    But on the other hand the chance to select the urn for which the 
chance of extracting a [white] ball is x, becomes the higher, the more x 
differs from OK′. Therefore, and also because the area I′L′l′i′ is only a 
small fraction of the total area OB′b′k′o′, it can happen that for a large 
number of events consisting in fortuitously selecting an urn and 
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extracting n white balls in m drawings, the number of cases in which x 
is beyond the interval (95.1) certainly exceeds by the Bernoulli 
principle the number of cases in which x is contained within it 
although probability P defined above continues to exceed 1/2 or is 
even very close to unity. 
    It follows that if, after extracting n white balls in m drawings, it is 
stated that the value of x for the urn fortuitously selected for the 
drawings is contained within the interval (95.1) the chance of an error 
of that judgement will not in general be (1 – P) but (1 – P′) which can 
essentially differ from (1 – P) and remain unknown until the law of 
probabilities represented by curve o′k′b′ remains unknown. In a large 
number N of identical judgements made under the same circumstances 
the ratio of the number of the correct to that of the mistaken 
judgements will not anymore be approximately in the ratio P/(1 – P). 
The probability P resulting from the Bayes rule can only be 
understood in the subjective sense serving for regulating conditions of 
betting since we do not know anything about the form of the curve 
o′k′b′.  
    But suppose now that m and n denote large numbers. Then, owing to 
the Bernoulli principle for the values of x such as OE′ which is much 
shorter than OI′, the event consisting of extracting n white balls in m 
drawings will be very rare and actually impossible. Therefore, 
although the ordinate E′e′ is much larger than K′k′, in approximate 
calculations the appearance of that event when drawing from an urn in 
which x has value OE′ or a smaller value can be disregarded. Such an 
event will occur extremely rarely even when N becomes very large. 
The same remark is applicable to values of x much larger than OL′. 
Therefore, when calculating P′ as denoted above, if the curve o′k′b′ is 
given, it is only necessary to consider its portion close to k′ in which 
ordinates little differ from K′k′ or n/m. Indeed, the other portions of 
that curve whichever form they have do not essentially influence the 
value of P′.  
    Since the variations of the ordinates in the portion of the curve close 
to k′ are small, the error made when implicitly supposing that by the 
Bayes rule that ordinate [K′k′] is constant, is very small. Therefore, the 
value of P can be assumed with a sufficient approximation as the value 
of P [of P′]. For sufficiently large m and n probability P thus acquires 
an objective value independent from the form of the unknown function. 
In other words, the contrary probability (1 – P) provides an 
approximate but sufficiently precise measure of the chance of an error 
which actually affects our judgement in pronouncing, after the 
extraction of n white balls in m drawings, that, for the urn which 
fortuitous causes or causes independent from those governing the 
drawings have selected among many others for our experiment, the 
chance x is contained in the interval (95.1).  
    96. When m and n are large numbers, calculations based on the 
abovementioned remarks prove that there exists a connection between 
the probability11 P and the limit l expressed through an auxiliary 
variable t (§33) by means of equation 
 

    /[2 ( )].t lm m n m n= −                                                    (96.1)  
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This result can be understood by a very simple reasoning12. Actually x 
always denotes the unknown chance and (§ 33) for sufficiently large 
values of m and n there exists an equation 
 

    /[2 (1 )].t l m x x= −  

 
    This formula will not essentially change if the unknown x is 
replaced by a very little differing ratio n/m, differing the less the larger 
are m and n. Formula (96.1) is indeed the result of that substitution. 
    97. It can be required to determine the probability that in another 
series of a large number m′ of drawings from the same urn the ratio 
n′/m′, where n′ is the new value of n, is contained within the interval 
n/m ± l′. And if l is exactly zero, the probability P that (n/m − n′/m′) is 
contained within ± l′ will be provided by formula13 
 

    /[2 ( )].t l m m n m n′ ′= −                                                 (97.1) 

 
    However, we know that the value of l corresponding to the same 
probability P should necessarily increase because of the fortuitous and 
very small, but differing from zero values as admitted by the deviation  
(x − n/m). Calculations prove that the preceding formula should 
therefore be replaced by 
 

    .
2 ( )( )

mm
t l m

n m n m m

′
′=

′− +
                                          (97.2) 

 
If m′, although considerable, is very small as compared with m (for 
example, if it is of an order of a thousand, and m, of millions), 
formulas (97.1) and (97.2) appreciably coincide, and if m′ = m, the 
values of l′ in (97.2) and (97.1) are in the ratio √2:114. That ratio ever 
increases with the increase of m′ and with m remaining constant 
although the absolute value of l′ in (97.2) incessantly decreases. 
Finally, when m′ becomes very large as compared with m, that value l′ 
appreciably coincides with the value of l in formula (96.1).  
    This result was easy to foresee because the ratio n′/m′ can not 
essentially differ from x. It is also possible to arrive at formula (97.2) 
when determining by the Bayes rule the probability that after n white 
balls had been extracted in m drawings, n′ were extracted in m′ 
drawings, and then, by formulas of ordinary approximation to pass on 
to the case in which m, n, m′ and n′ are large numbers. However, the 
main point is that the obtained result is independent from the 
conditions of selecting the urn and therefore from the Bayes rule. They 
are only consequences of the Bernoulli principle and the hypothesis 
which assigns large values to those four numbers. 
    98. The limit l′ corresponding to probability P is provided by 
formula (97.2) as a function of m, n and m′ or of m, n, m′ and n′ 
according to formula15 
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in which these four numbers enter symmetrically.  
    It is understandable that the two values of t in formulas (97.2) and 
(98.1) can not in general be identical because of the fortuitous 
deviations still inherent in n′ after assigning a determinate value to m′. 
However, these two values become identical and equal to 
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if the two ratios, m/n and m′/n′, are strictly equal so that we can state 
that, at the same time, m′ = αm and n′ = αn. It follows that the two 
values of t in formulas (97.2) and (98.2) very little differ from each 
other if the difference between those two ratios remains very small. 
And this should be admitted if m, n, m′ and n′ are large numbers and 
both series of extractions are made, as supposed, from the same urn. 
    For applying formulas (97.2) and (98.2) it is evidently not necessary 
for the first series of drawings to be already made, so that, before all 
the trials the deviation (m/n − m′/n′) between the two series of future 
extractions from the same urn or from two urns giving the same 
chance x of drawing a white ball remains within the limits ± l′ with the 
same probability P. 
    The value of l′ is connected with those of t and P by formula (98.1) 
which we prefer because of its symmetric composition. 
    99. Suppose that the two series of extractions are made from two 
urns or from the same urn when its contents can change between those 
series. Denote by x1 and x2 the unknown chances of extracting a white 
ball. Experience provides 
 
    n/m − n′/m′ = δ, 
 
in which for the sake of definiteness δ is a positive fraction. And, 
having the observed deviation δ, it is required to determine the 
probability П that x1 > x2 at least by α which can be smaller or larger 
than δ.  
    As before, denote by P the probability that existed before the trials 
when admitting that x1 = x2 and that (n/m − n′/m′) will be contained 
within ± (δ − α). The value of P will be provided by the auxiliary 
magnitude t: 
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The double sign indicates that (δ − α) should always be positive for t to 
remain positive. Then 
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    П = (1 ± P)/2 
 
with the signs corresponding to α being smaller or larger than δ.  
    If α = 0, П will be the probability that x1 − x2 > 0 however small this 
difference is supposed to be. In other words, it will be the probability 
that the deviation δ can not be only attributed to the anomalies of 
chance but that it indicates a variation of chances from one series of 
trials to another.  
    Suppose that n′/m′ = w and let m′ increase to infinity. Then П will 
denote the probability that x1 > w at least by α. In this case the value of 
t which determines P and therefore П, becomes 
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For example, if n > m/2, the probability that x1 > 1/2 or that the urn 
contains more white balls than black ones will be equal to the value of 
П corresponding to 
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    100. Imagine that each ball contained in the urn, whether white or 
black, is marked in red ink by letters a or b but that it is not known 
whether the marks were applied by a blind agent without 
distinguishing the colours of the balls, or, on the contrary, by some 
cause so that one of these letters is preferred for balls of a certain 
colour.  
    At each drawing the mark on the extracted ball is registered and the 
result of analysing the extractions is the separation of the total series of 
the m drawn balls in two partial series, m1 balls marked a of which n1 
are white, and m2 balls marked b of which n2 are white. It is required 
to find out whether the deviation (n1/m1 − n2/m2) = δ should be 
attributed to anomalies of chance or, on the contrary, does it indicate 
with a sufficient probability that the chances of extracting a white ball 
are not identical in both series, and that the letters a and b were not 
distributed completely independently from the colours of the balls. 
    Before the analysis there was probability P corresponding to  
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that the deviation will be contained within the limits ± δ provided that 
the chance x remained identical in both series. After the analysis there 
appeared probability  
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    П = (1 + P)/2 
 
that the deviation δ indicates that x1 > x2. These letters denote the 
values of the chance x in the two series. It follows that if П only differs 
from unity by a very small fraction, it should be considered almost 
certain that the chance of extracting a white ball varied from the first 
series to the second. 
    101. When comparing a partial series not with the other one, but 
with the total series, the probability P that the deviation (n/m − n1/m1) 
is contained within the limits ± δ is provided as a function of t  
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due to Bienaymé (1840)16. It is a reasonable analogy with that of § 97. 
    102. It is quite possible to imagine that the balls are also 
distinguished by inscribing on them letters a′ and b′. We suppose that 
the distributions of those new letters and of a and b are independent. 
However, we also suppose that we do not know in advance whether 
the former distribution is independent from the colours of the balls. An 
analysis of the m drawings separates the total series in two new partial 
series; one of them is composed of balls marked a′, n1′ of them white, 
and (m1′ − n1′) black, and the other, of balls marked b′, n2′ of them 
white, and (m2′ − n2′) black. To the observed deviation  
(n1′/m1′ − n2′/m2′) = δ correspond probabilities P′ and П′ sufficiently 
defined by the above.  
    Nothing restricts the number s of the binary systems of contrary 
letters followed by the same number of separations of the total series. 
Denote by 
 
    m1

(i), n1
(i), m2

(i), n2
(i), δ(i), x1

(i), x2
(i), P(i), П(i),  

 
the numbers in the system (a(i), b(i)) being the analogues to 
 
    m1, n1, m2, n2, δ, x1, x2, P, П, 
 
the numbers of the system (a, b). 
    Suppose also that all the terms of the sequence П, П′, …, П(s−1) 
except П(i) are sufficiently low for believing at once that all the 
deviations δ, δ′, …, δ(s−1) except δ(i) should be attributed to anomalies 
of chance. It is required to find out what follows from the determined 
values of δ(i) and П(i). In this connection it is important to make an 
important distinction. If the experimenter wishes to separate at once, 
without any analysis, the total series and prefers the system (a(i), b(i)) 
whether chance suggested him the idea to study it in preference to all 
the other ones or he had some prior motive to believe that the chances 
x1

(i), x2
(i) are unequal then, as explained above, the number П(i) 

undoubtedly measures the probability that after the drawings x1
(i) really 

exceeds x2
(i). And if П(i) very little differs from unity that excess 

should be regarded as almost certain. 
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    However, if the experimenter is only led to consider the system (a(i), 
b(i)) in preference to the other ones by studying the results of the 
drawings, his conclusion can not be the same. Actually, if the chances 
x1 and x2 are identical, even having a high probability P that for each 
system (a, b) the deviation δ is contained within certain limits l, if the 
number s is very large there can be a high probability that at least for 
one system that deviation will exceed these limits. In that case the 
observed anomaly concerning the system (a(i), b(i)) considered among 
many others can indeed be fortuitous. It is even likely that, when 
multiplying the numbers of systems and drawings we will finally 
fortuitously encounter such an anomaly. 
    And there is nothing surprising that essentially unequal chances of 
error effect the same judgement about the same fact depending on how 
was the judgement made. Thus, it is quite understandable that the 
experimenter is only mistaken once in a thousand cases if only, 
according to a preconceived idea, he at once separates the total series 
according to the letters a(i), b(i) and finding that П(i) = 0.999 announces 
that x1

(i)> x2
(i). On the contrary, he can be mistaken 999 times out of a 

thousand in formulating the same judgement when only encountering a 
deviation δ(i) after a large number of attempts by trial and error and 
having this result as the only reason for concentrating his attention on 
the system (a(i), b(i)) in preference to many other ones. 
    There follows a singular consequence17. A person not knowing how 
the data were analysed and whom the experimenter told the result of 
that analysis concerning the system (a(i), b(i)), but not how many 
attempts he made to achieve that result, is unable to judge with a 
determined chance of error whether the chances x1

(i) and x2
 (i) are equal 

or not. Actually that person could have had prior reasons to believe in 
their inequality and by similar reasons the system (a(i), b(i)) rather than 
many other equally possible systems interested the experimenter 
independently from the results of the analysis. However, to appreciate 
these motives is not equivalent to [revealing] a measurable probability 
having an objective value and representing the veracity or error really 
affecting a judgement when the conditions of randomness are strictly 
defined. In the next chapter devoted to the applications of statistics we 
return to this singular consequence and explain it more sensibly by less 
abstract examples. 
 

Notes 
    1. The term advantage is here connected with equalizing an unfair game by 
differing the gamblers’ stakes (Montmort 1708/1713, p. 74). The outcome of a game 
of piquet, see Laplace, 1774 and Poisson (1837, § 65) depends on chance and the 
gamblers’ abilities. Jakob Bernoulli, in his Lettre à un amy … appended to his Ars 
Conjectandi studied such a game. [B. B.] 
    2. Cf. § 89 and Poisson (1837, § 28). [B. B.] 
    3. Bayes did not introduce that formula which is due to Laplace.  
    4. Poisson (1837) repeatedly stated that two persons having different knowledge 
about a disputed thing can derive differing conclusions about it. 
    5. Poisson (1837, § 32) offered a general formula for such probabilities. [B. B.] 
    6. This is the famous rule of succession (Zabell 1989). 
    7. Poisson (1837, § 59) investigated that problem, but, as Cournot stated, no one 
had studied the appropriate statistical data. 
    8. Poisson (1837, p. 2) noted that it was Condorcet who had remarked on the 
possibility of applying the Bayesian principle to the probability of judicial 
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judgements and Laplace (1812/1886, pp. 528 – 530) took up that recommendation 
later criticized by Bienaymé (1838, p. 208). [B. B.] 
    9. Concerning the objective value of the Bayes rule see Mises (1964, pp. 342 – 
343) who noted that the ignorance of prior probabilities becomes less important with 
the increase of the number of observations. [B. B.] 
    10. I did not reproduce Cournot’s pertinent figure (several others either), hence my 
careless word below. 
    11. Probability P is the probability that chance x is contained within the interval 
(n/m − l, n/m + l). Formula (96.1) a few lines below is due to Laplace (1812/1886, p. 
287) and was applied by Poisson (1837, § 83). [B. B.] 
    12. See that simple reasoning in Poisson (1837, § 83). [B. B.] 
    13. Formula (97.1) is due to Poisson (1837, § 83) and formula (97.2), to Laplace 
(1812/1886, pp. 393 – 394). [B. B.] 
    14. The ratio √2/1 was noted by Laplace in 1774 and 1780 and Poisson (1837, § 
87). [B. B.] 
    15. Formula (98.1) is due to Poisson (1837, § 87). [B. B.] 
    16. Heyde & Seneta (1977, pp. 108 – 111) discussed Bienaymé’s note (1840) who 
had introduced the formula provided later by Cournot. [B. B.] 
    17. Cournot was one of the first to turn attention to that phenomenon. [B. B.] 
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Chapter 9. Statistics in General  

and Experimental Determination of Chances 
    103. Statistics is a quite modern science1. The geniuses of the 
ancient times had not been voluntarily busying themselves with work 
demanding precision. Means of research and communication did not 
exist and finally (what is most of all surprising) in spite of the variety 
of their philosophical speculations they apparently had not suspected 
the existence of the principle of compensation2 which in the long run 
always manifests the influence of regular and permanent causes and 
ever more weakens that of irregular and fortuitous causes. 
    In our day, on the contrary, statistics developed, so to say, 
abundantly and we should be guarded against its premature and 
excessive applications which can discredit it for a while and delay the 
so desirable epoch when the materials of the experience will serve as a 
certain basis for all the theories aimed at the diverse parts of the social 
organization. Actually, statistics (as indicated by its name) is 
understood as a collection of facts which take place because of the 
agglomeration of men into political societies. However, for us that 
word takes a wider acceptance. We believe that statistics is a science 
aimed at collecting and coordinating numerous facts of each kind for 
obtaining numerical ratios appreciably independent from anomalies of 
chance and indicating the existence of regular causes whose action is 
joined with that of fortuitous causes. 
    104. That distinction between regular or permanent causes and 
accidental or fortuitous causes frequently occurs in this work and it is 
proper to attach quite an exact sense to it and to see how is it 
connected with our notion of randomness and physical possibility of 
events. When a die of irregular structure is tossed many times in 
succession, the appearance of its certain face at each throw is the effect 
depending on the direction and intensity of the impulsive force as well 
as on the form of the die and the manner of the distribution of its mass. 
However, in general we may admit that the causes determining the 
intensity and direction of the impulsive force as well as its point of 
application at one throw are perfectly independent from those 
determining them at the next throws. 
    But the irregularity of structure, for example the [existence of a] 
distance of the die’s centre of gravity from its geometric centre each 
time acts3 in the same sense and favours the appearance of a certain 
face oftener than some other. These invariably present causes whose 
influence extends over a whole series of trials are those which we call 
regular or permanent whereas those which dominate each trial 
separately without leaving any trace of solidarity between their action 
from one case to another, are called accidental or fortuitous. The 
effects of their irregular variations compensate themselves and 
disappear in the mean result of a large number of trials. They do not 
influence the measure of possibility of an event A or of [a contrary] 
event B although in each particular case they efficiently unite and 
determine the appearance of A or B.  
    The permanent causes are those whose influence determines the 
possibility of each event susceptible of appearing or not according to 
the combination taking place between permanent and fortuitous causes. 
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And the elimination of accidental causes and the investigation of 
permanent causes is the essential aim of statistical researches. 
    105. For statistics to deserve the name of science it should not only 
consist of a compilation of facts and numbers; it should have its theory, 
its rules and principles and be applicable to physical and natural as 
well as to social and political facts. In this sense, the phenomena 
occurring in the celestial spaces can be subjected to statistical rules 
and investigations just like agitations of the atmosphere, perturbations 
in the animal economy and still more complex facts generated by the 
state of the society, by the friction between individuals and nations5. 
    106. The study and critical analysis of documents should lead in 
each branch of statistics to difficulties and special rules with which we 
will not occupy ourselves. When admitting that we have collected 
necessary materials or documents having the required exactness and 
authenticity, they should be processed, ordered, their elements restored 
to proper form and connected with the original data whose values 
implicitly determine everything else but can sometimes be inaccessible 
to direct observation. For example, when treating judiciary statistics, it 
is seen that statistics can not directly provide the chance of an error 
corrupting sentences returned by a judge or a tribunal which can 
nevertheless be indirectly derived from other statistical numbers like 
effect is derived from its cause. 
    Statistics is a science of observation. Numbers are the instruments 
applied by statisticians and their precision is made comparable by 
formulas of the theory of chances. But the essential goal of the 
statistician, just like of any other observer, is to penetrate as deep as 
possible into the knowledge of the essence of things. To achieve this, 
he should by a rational discussion separate as distinctly as possible the 
immediate data of observation and their modifications introduced 
solely by the observer’s point of view and his means of observation. 
    107. The ordinary immediate aim of statistical enumerations and 
tables is to find out the chances of the occurrence of an event that, 
depending on fortuitous combinations, can happen or not under given 
circumstances, or to determine the mean value of a variable magnitude 
susceptible of fortuitous oscillations within certain limits, or, finally, to 
assign a law of probabilities of an infinite number of values which a 
variable magnitude can take under the influence of fortuitous causes. It 
is natural to treat at first the statistical determination of the chance of 
an event or to provide a measure of its possibility.  
    It was seen in § 96 that if an event A whose unknown probability is 
p has appeared n times in m observations or trials, there is probability 
P that the error made when assuming that p is equal to n/m, is 
contained within the limits ± l where l is connected with an auxiliary 
magnitude t and therefore with probability P by equation (96.1) 
 

    /[2 ( )].t lm m n m n= −   

 
    We have explained that probability P has an objective value. It 
actually measures the possibility of an erroneous judgement when 
assuming the above. Even when among the indefinite multitude of 
facts to which statistical observations are applicable, owing to the 
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unknown reasons certain values of p can be produced more frequently 
than the others, the number of proper judgements as stated above will 
be to the number of those erroneous as P/(1 − P) if only we collect a 
sufficiently numerous series of judgements for the fortuitous 
anomalies to be appreciably compensated. 
    For the same value of P the interval 2l of the errors is inversely 
proportional to  
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so that this number can be adopted as the measure of precision of the 
determined unknown p when its value is believed to be n/m. In the 
words of other authors, (107.1) measures the weight of the result 
obtained by statistical observations. For rendering the degree of 
precision of statistical results easily comparable it would have been 
proper to supplement the ratios n/m by their appropriate weights 
(107.1).  
    108. In a new series of m′ observations event A will occur n′ times 
and it should be regarded impossible that n′/m′ strictly coincides with 
n/m. If the chance p did not change between the series of trials, there 
will be probability P (98.1) that the deviation (n/m − n′/m′) is 
contained between the limits ± l determined by the equation  
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    Suppose that experience provided that  
 
    n/m − n′/m′ = δ, 
 
then, in the preceding equation l′ = δ and after calculating the 
corresponding values of t and P, the fraction Π  = (1 + P)/2 will 
provide the probability that the chance p of the event A in the first 
series of trials exceeds its chance p′ in the second series or that the 
probability of the deviation δ can not be attributed to anomalies of 
chance.  
    109. In general, p and p′ should be understood as the means of a 
multitude of the distinct possible values of the chance of event A when 
passing from one category to another6 or even from one individual 
case to another (§ 75). These means can differ because either the 
chances of the event in the different categories vary between the 
series; or the same categories enter in these series in differing 
proportions; or the categories in the first series do not enter the second 
or vice versa; or, finally, because of the coincidence of all these 
circumstances. 
    All these causes of the variation of the mean p between the series 
can be fortuitous and irregular. Thus, an event comparable to a throw 
of dice can determine the proportions in which categories (a), (b), (c), 
… combine to form the series (m) and (m′) [the series consisting of m 
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and m′ trials]. Another event also comparable to a throw of dice can 
determine the values of the chance of event A for (m) and then for (m′) 
for each category (a), (b), (c), … In this sense it will not be exactly 
true to say that the deviation δ indicating a likely variation of the mean 
p from one series to another can not be attributed to irregularity of 
chance. Nevertheless, we will continue to apply the same expressions 
in the following sense. 
    It is clear that the event which determines the value of the chance p 
for each category (a), (b), (c), …of the series (m), although being as 
though a fortuitous and irregular cause for a system formed by a large 
number of series (m), (m′), (m″), … is a constant cause (§ 104) of sorts 
with respect to individual observations of the series (m) because, in the 
same time and the same manner, it is solidary7 and affects all its 
observations belonging to each category separately. Just the same, the 
event which determines the proportions of the categories forming 
series (m), being as though a fortuitous cause with respect to the 
system of series (m), (m′), …, affects all at once the individual cases of 
each series.  
    Let us mentally group all the influences or causes affecting in the 
same way all the observations of a series or a part of them. Group also 
all the influences which affect each observation independently from all 
the others. The first group determines for each series the means p, p′, 
… which either change fortuitously and irregularly or not from one 
series to another. What remains from the action of the second group in 
the observed results and does not disappear due to compensation is 
regarded as the part of randomness, of fortuitous anomalies in each 
series. And when we say that the deviation δ indicates a variation of 
the mean p not to be attributed to anomalies of chance, we mean that δ 
is not, or at least is not wholly due to the influences of the second 
group. It is engendered at least partly by the modifications introduced 
by the influences of the first group although they can also result from 
fortuitous and irregular causes whose effects are compensated when 
collecting a sufficient number of observations.  
    110. Suppose that m observations of the first series are distributed 
among two very numerous categories (a) and (b); that in the category 
(a) are m1 observations and n1 events [occurrences of event] A, and in 
category (b), m2 and n2 respectively. Let also 
 
    n1/m1 − n2/m2 = δ, 
 
then there will be probability Π  = (1 + P)/2 that the mean chance of 
event A for category (a) will exceed that for category (b). The value of 
P will correspond to the value of t as provided by equation (100.1). 
    111. We should now return to the remark made in § 102. It is clear 
that nothing restricts either the number of viewpoints from which 
statistically researched natural events or social facts can be considered, 
or, as it follows, the number of indications according to which they can 
be distributed into many groups or distinct categories. Suppose for 
example that it is required to determine, by issuing from a large 
number of observations collected in a country such as France, the 
chance of a male birth known to exceed 1/2. We can at first distinguish 
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those born in and out of wedlock, and find out, when having a large 
number of observations, that there is a high probability that that chance 
is much higher in the former case. We can also distinguish births in the 
countryside and in towns and arrive at a similar conclusion. These two 
classifications so naturally come to mind that they became the object 
of study for all statisticians.  
    It is clear that the births can also be classified according to 
primogenitures [?], age, profession, fortune, religion of the parents. 
We can distinguish first and second marriages and births in different 
seasons of the year. In a word, we can study many accessory 
circumstances and an indefinite number of indications as a basis for 
the same number of distributions among categories. It is also evident 
that with that number increasing without limit it is ever more probable 
in advance that solely by the effect of randomness at least one of them 
will provide essentially differing rates of the number of male births for 
two contrary categories. 
    Therefore, as we have already explained, for the statistician 
occupied by grouping and comparisons, the probability that a given 
difference is not attributable to anomalies of chance will take very 
different values depending on the number of groups tested before 
encountering that difference. We invariably suppose that large 
numbers are available so that by virtue of the indicated principles (§ 
95) in each system of tests that probability will have an objective value 
as being proportional to the number of bets which the experimenter 
will actually win if the same bet is repeated a large number of times 
always after perfectly similar tests and if he has a sure criterion for 
distinguishing the cases in which he was in the right or not. 
    However, unsuccessful tests usually leave no traces8; the public only 
knows the results which the experimenter thought to be deserving 
notice. It follows that a person alien to the testing is absolutely unable 
to regulate bets on whether the result is, or is not attributable to 
anomalies of chance. Even approximately assigning the rate of 
erroneous judgements, when having a very large number of similar 
judgements made under identical circumstances, will be impossible. 
For that person the probability which we denoted by Π  corresponding 
to deviation δ loses all objective consistency. He will differently 
appraise the same magnitude of the deviation depending on the idea 
about the intrinsic value of the indication selected as the basis of the 
corresponding division into categories. 
    112. For elucidating that remark without leaving our example 
suppose that births are divided into two categories, those occurring 
between summer and winter solstices or, on the contrary, between 
winter and summer solstices. It is plausible in advance that the chance 
of a male birth in those periods is not strictly invariable or even that it 
appreciably varies from one of them to another.  
    The time of birth is connected with the time of conception9 so that 
births of the first category mostly correspond to conceptions in winter, 
between the autumn and spring equinoxes. And it is indeed normal to 
presume that the differences of temperatures, diet, work and habits 
occasioned in our climate by the passage from summer to winter can 
appreciably influence the chance of conceiving a male10. If the 
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magnitude of the observed difference corresponds with that conjecture, 
its attribution to the anomalies of chance will be extremely unlikely. 
Only in a very large number of divisions into categories chance all by 
itself can produce appreciable differences in some of them, and in 
advance it is very unlikely that exactly in these latter cases we would 
have thought that the difference was occasioned by a real variation of 
chances. 
    Suppose now that we distribute the births in two categories 
depending on their occurrence during even or odd days and that the 
resulting difference is very appreciable. We will still believe that that 
difference is likely attributable to anomalies of chance. Indeed, from 
the very beginning the distribution made should seem to be extremely 
arbitrary and artificial. It does not correspond to any natural 
phenomenon or to habits of social life. Seasons, weeks, even phases of 
the Moon circulate indifferently to even and odd days. We therefore 
have every reason to believe that a notable difference corresponds to a 
distribution of categories that can occur fortuitously because of the 
multiplicity of the distributions and only discovered due to the 
patience of the calculator.  
    If, nevertheless, the difference persists in a new series of 
observations we will be obliged to admit, however bizarre it seems in 
advance, that the chance of a male birth is not the same for even and 
odd days of the month. The result of the first experience signals that 
the pertinent distribution should be checked by a new series of trials 
and, since there is an infinite multitude of possible distributions 
according to arbitrarily selected indications, it would have been 
extraordinary for randomness all by itself to lead twice in succession 
to a notable difference. 
    113. It follows that the probable judgement, pronouncing that an 
observed deviation is not attributable to anomalies of chance, results 
from two elements. One of them can be precisely and mathematically 
determined; it is the rate denoted until now by P of the fortuitous 
combinations which provide a smaller deviation for a randomly 
selected distribution. The other element is the preliminary judgement 
according to which we consider the distribution leading to the 
observed deviation as one of those among their infinite possible 
multitude which it is natural to study, but not only because it is one of 
those to which the observed deviation turns our attention. 
    That preliminary judgement, which in our opinion should direct 
statistical studies to some distribution rather than to another, is based 
on motives which can not be rigorously appreciated and can be 
differently appraised by different minds. It is a conjectural judgement 
also founded on probabilities which can not be reduced to enumeration 
of chances and whose discussion does not properly belong to the 
doctrine of mathematical probabilities. We will return to them in our 
last chapter. 
    Although a judgement made after inspecting statistical tables 
includes a variable element unyielding to precise measure, we should 
guard ourselves against concluding that the mathematical theory of 
chances is useless for statisticians. It is evident that the importance [the 
significance] of the deviation δ as an observational fact depends on its 
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magnitude and the number of applied observations. But what is the law 
of that dependence? Only the theory of chances can tell us and show 
us how to calculate the ratio P corresponding to δ. As to probability 
denoted above by Π , in its application to statistics it really has no 
objective consistency. It does not at all measure the chance of verity or 
error inherent in a definite judgement.  
    114. We do not conceal the delicate in all the discussions and wish 
to multiply the examples throwing light on it. Suppose that we have 
the distribution of births by sex for France in its entirety and for a 
department in particular. There will be a certain deviation δ and a prior 
probability P11 that the deviation is smaller than the observed provided 
that the chance of a male birth is the same in both cases and a posterior 
probability Π  that that chance differs. However, for that latter 
probability to have an objective value the department should be 
selected randomly […], all the deviations should be purely random and 
the real chance of a male birth, should not really change from one 
department to another.  
    In many respects naturally interesting for the statistician exceptional 
conditions in the department of Seine can essentially influence the 
chance of a male birth and the ratio Π  will once more assume its 
original sense. Indeed, had it been probable that a game of chance all 
by itself produces for one of the departments such a large deviation, as 
provided by observations in the department of Seine, it would be 
extraordinary that chance directs that deviation to that department […] 
    However, it is unknown whether what surprises all minds when 
discussing the department of Seine, will surprise everyone, or surprise 
to the same extent, when discussing the department of Corsica, or du 
Nord12, or many others which also seem in advance to be placed in 
exceptional conditions. How to estimate the value of statistical 
experience and the derived posterior probability for each department 
separately? Here evidently enters a variable element resisting 
mathematical determination.  
    A similar remark is applicable to the study of yearly births. If I 
choose a year by chance and derive its notable deviation from the 
mean of many successive years, there will be a certain probability that 
the mean chance for that year is not the same as for all the series of 
collected observations. However, if we only turned our attention to 
that year after studying each year separately, since its deviation was 
the largest, the probability of a variation of the chance will become 
very different. It can retain its primitive value if that year was 
distinguished by a large climatic perturbation, high prices, [unusual] 
morbidity and therefore deserved preferential statistical study. 
    115. When observations are chronologically classified, as in the 
example above, it is impossible to extend the same statistical 
investigations and the obtained results should be accepted with their 
inherent indeterminateness. However, when having reason to believe, 
or when the observations themselves indicate that in another system of 
classification the chances do not vary in time, we will dispense with all 
the subtle distinctions. When indefinitely continuing the observations, 
we will determine with any desired precision the pertinent proper 
chances for each system of categorical division.  
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    With the increase in the number of observations, the number of 
categories can be multiplied while being invariably guided by the 
notions acquired in accordance with the conditions of the studied 
natural or social phenomenon. And the complicated fact, the object of 
the first numerical determination (§ 106), will be gradually 
decomposed into its elements. The Bernoulli principle to which we at 
last always return as to the only solid basis of all the applications of 
the theory of probability13 will be sufficient for the statistician whereas 
mathematical formulas incessantly provide the measure of the attained 
degree of precision. 
    116. Those formulas, as provided throughout our book, are only 
approximate but their precision usually suffices if observations are 
counted by the hundred. The most eminent authors, notably Laplace, 
did not hesitate to apply them in such cases (§13, Note 3; § 33, Note 2; 
and § 69, Note 5). And even when the number of observations is too 
small for allowing this practice, those formulas can be suitable for 
revealing variations of chances from one category to another. However, 
in such cases numerical calculations of probabilities should be done by 
formulas whose complication often renders their usage very tiresome. 
    The applied number of observations can also be too small for 
providing very high probabilities to the mentioned variation of chances 
between the categories even when making use of the total series of 
observations. However, the manner of decomposing such series can 
render the existence of those variations very likely. Thus, we will 
obtain a certain posterior probability Π of an inequality of chances 
when considering the difference δ between two series of 50 
observations of each category, and another probability ′Π  when the 
difference between two series of 150 observations each is δ′ which can 
be either larger or smaller than δ.  
    In general, however, ′Π will exceed Π  although both can be of such 
an order that the difference will be explained by a fortuitous anomaly. 
On the contrary, when decomposing each series of 150 observations 
into 3 consecutive series of 50 observations each14 the persistence of a 
difference of the same order for the pairs of partial series can render 
the hypothesis of a succession of fortuitous anomalies so unlikely that 
quite reasonably all doubts about the existence of an inequality of the 
chances of the same event in the two categories disappears15. 
    117. It is often insisted on the need to combine a very large number 
of observations for arriving at appreciably fixed results ridden from all 
the irregularities of chance. And, as it is very often borne in mind, we 
should distinguish fortuitous influences affecting each observation 
independently from all the others of the same series, and other 
influences dominating all the observations of a series or its part but 
nevertheless being fortuitous since irregularly varying from one series 
to another (§ 104). The effects of their variation are compensated when 
collecting a large number of series and therefore a very large number 
of individual cases.  
    Among the causes of solidarity of causes or influences which 
dominate diverse trials of the same randomness and thus demanding an 
accumulation of a very large number of trials for the mean results to be 
stable we shall first of all mention the closeness of trials in space or 
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time. We have seen in an example of § 79 borrowed from Bienaymé 
that if the value of a chance varies not fortuitously from one trial to 
another in a total series of m trials but is fortuitously determined in a 
partial series of m1, m2, … trials, it will not in general be sufficient to 
have a large number m of observations for the fortuitous anomalies to 
be considerably compensated. This aim will only be achieved when 
the numbers m1, m2, … are not so large, but the total series (m) is 
composed of a large number of partial series (m1), (m2), …  
    Actually, the example of § 79 is not directly applicable to statistical 
facts. We can not in general suppose that the chances remain 
rigorously constant for a whole series of neighbouring trials and 
change sharply and fortuitously from one series to another. On the 
contrary, they are subjected to progressive modification and like all the 
magnitudes in nature even in their irregular variations usually obey the 
law of continuity. However, it is not always that in general chances 
differing but little dominate a large number of neighbouring trials, so 
that we can not at all regard as independent two trials immediately 
following each other or even as absolutely independent those not 
separated by such a large number of intermediates that the trace of the 
initial state of the chance is erased.  
    This is how the unevenness of the terrestrial surface or of the 
surface of an agitated sea is considerably independent from point to 
point at large distances whereas close points in spite of their irregular 
course necessarily remain on very little differing heights. We can not 
in advance reduce to formulas the influence of this connection between 
chances of neighbouring trials16, but the fictitious examples as those in 
§ 79 sufficiently prove that that influence can be very large and 
experience confirms this presumption. 
    In many applications to social [political] economy and to such 
branches of natural sciences as meteorology17, we should accumulate 
observations in a number much exceeding those assigned by the 
formulas based on the hypothesis of independence of chances from 
one trial to another for obtaining considerably stable means.  
    118. A fact seemingly singular at first sight which authors did not 
fail to note18 is that things, engendered by the developing activities of 
man, which apparently result from a multitude of very complex causes 
such as the ratio of the number of the accused for committing crimes 
to the number of the inhabitants of the country, or the rate of 
conviction, experience less annual variations than things depending on 
the coincidence of blind forces of nature. However, after 
contemplation that result ceases to surprise.  
    It is easily understood that there only exists little or no solidarity 
between the causes whose coincidence determines the perpetration of 
different crimes, or between condemning different accused, whereas 
there evidently exists a very strong solidarity between causes whose 
fortuitous coincidence leads to rain at the same place today and 
tomorrow. It is therefore quite understandable that for things, 
depending on the individual activity of man, the mean chances appear 
more stable and actually less often experience irregular perturbations. 
On the contrary, there is every reason to believe that the succession of 
slow transformations of the social situation leads to their secular 
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variations not in general observed in physical phenomena either 
because they do not exist or occur extremely slowly. 
    119. Even when there is no solidarity resulting from neighbourhood 
in space or time between chances dominating each trial, the 
differences that reveal variations in the mean values of chances from 
one series to another which actually dominate each trial do not 
necessarily testify to a variation in the general system of fortuitous 
causes on which depend the phenomena studied by statistics. We (§ 
109) have remarked that the proportions in which categories (a), (b), 
(c), … unite in forming the series (m), (m′), … can vary from one 
series to another owing to causes acting irregularly and fortuitously in 
differing series or their parts although influencing at once all, or a part 
of observations of a series and therefore affecting the value of the 
mean chance. Thus, the category of the accused for illegally cutting 
timber can increase if the year or the winter was severe and firewood 
expensive. Also increased can be the number of those brought to court 
for brawls during years when the price of alcoholic beverages is low 
and pubs are much frequented, etc. 
    Since the rate of conviction is different for each category of crime, 
its mean value for the totality of the yearly accused certainly varies. 
However, the causes of that variation are reasonably thought to be 
accidental and fortuitous, their effects compensate each other if a few 
years are combined. On the contrary, no one reckons changes of 
criminal legislation among fortuitous causes since they suppress a 
class of crimes or submit it to a court of lower instance.  
    120. The most important goal of statistics is the investigation of 
causes dominating physical and social phenomena19. By their enormity, 
the accumulated numbers satisfy the conditions for stabilizing the 
means, and it is now more necessary to decompose the fortuities from 
each other (§§ 79, 106, 109) and, so to say, clean the conditions of 
randomness. Individual cases should be agglomerated into series for 
the sole aim of compensating the effects of causes acting quite 
independently on each individual case. It will be therefore not 
necessary anymore to work with very long series.  
    In any case, if such studies sometimes lead to error because of the 
caprice of chance, they ordinarily provide veritable consequences. We 
should not be deprived of the most fruitful means of investigation 
because it does not guarantee absolute certainty; for that matter, it is 
rarely attained by man. We should therefore multiply the number of 
categories and choose observations sufficiently close to each other in 
space or time so that in each series the variations of mean chances will 
be inconsiderable. 
 

Notes 
    1. Statistics originated in mid-17th century (Graunt, Petty). [B. B.] Cournot’s 
opinion about ancient times should really mean that ancient science was qualitative 
rather than quantitative. 
    2. From at least the time of Tycho Brahe and Kepler the arithmetic mean had been 
understood as an estimator preferable to a single observation because of that same 
compensation, and in 1756 – 1757 Simpson quantitatively confirmed that belief for 
two distributions. Cournot, however, repeatedly mentions compensation as though it 
invariably and unconditionally happens in a large number of observations. Again, 
sums of random variables, unlike their means, do not compensate. 
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    3. The words cause4, action, etc are understood here in the widest possible sense 
just like in ordinary language but not as rigorously as it is sometimes necessary in 
metaphysical analysis. […] A. A. C. 
    4. In 1774, Laplace defined cause relative to event E as a thing providing the 
proper chance to the appearance of E. [B. B.] 
    5. The next section can be included without changes in a modern work. B. B. 
    6. How to define a category? Cournot’s reference to § 75 is only partly helpful. 
See also § 119. A few lines below he denoted series and categories in the same way! 
    7. Such causes were generally known in geodesy and practical astronomy perhaps 
even in antiquity. In triangulation, morning and afternoon observations often lead to 
systematically differing results. Having the same number of both, the observer can 
expect the mean to be essentially free from the ensuing error. Cf. Note 2.  
    8. A usual practice for unscrupulous investigators. Categorically forbidden in 
geodesy (at least in Soviet Russia in mid-20th century).  
    9. Bru referred in this connection to Villerme, 1831. 
    10. Here, Bru referred to Aristotle’s De generatione animalium. Cournot’s opinion 
a few lines below is unfortunate in that meteorological differences strongly influence 
the other mentioned factors.  
    11. If the deviation is obtained by comparing a partial and a total series the 
expression for P can not remain as it was provided in § 108 when two partial series 
were compared. It should now be taken from § 101, but this particular remark does 
not change anything in general reasoning. A. A. C. 
    12. Cournot had apparently selected departments differing in climate, and Bru 
remarked that Aristotle (Ibidem), Montesquieu and Buffon had discussed the 
influence of climate on the sex ratio at birth. 
    13. Following Bienaymé, Cournot did not even mention Poisson’s law of large 
numbers. [B. B.] 
    14. Concerning the decomposition of observational series, Bru referred to Fourier, 
Bienaymé and Quetelet. 
    15. Let m be the number of observations and n, the number [of the occurrences] of 
event A in a total series. If m1 of the observations are collected at random to form a 
partial series, the probability that it contains n1 events A is evidently the same as 
when extracting without replacement n1 white balls in m1 drawings from an urn 
containing m balls, n of them white. That probability is equal to (§ 36) 
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and according to that section, if all those four numbers are very large, it will become 
likely that n1/m1 very little differs from n/m. 
    If the chance p of event A does not vary during the observation of the series (m), it 
will be possible to form the series (m1) from the m1 first observations of series (m) 
which is the same as though done fortuitously. And again for sufficiently large 
numbers m, n, m1 and n1 the ratio n1/m1 will very little differ from n/m even if that 
latter ratio notably deviates from the chance p because of an anomaly extremely low 
probable in advance. Bienaymé (1840) showed it by an elegant calculation which 
nevertheless we believe unnecessary since his conclusion was evident according to 
the preceding reasoning.  
    It is not necessary either to include the condition that the chance p remains 
constant; suffice it that its variations, if they occur, take place not chronologically. 
To prove this, suppose that the total series (m) is composed of two series, (m′) and 
(m″) made, for example, in different places and dominated respectively by chances p′ 
and p″. We imagine as previously that the total series (m) is disposed chronologically 
so that m1 first observations form a category in which m1′ are dominated by chance p′, 
and m1″ observations dominated by chance p″. If the numbers m′, m″, m1′ and m1″ are 
of a suitable order, the ratio m1′/m1″ will little differ from m′/m″.  
    If, for example, we chronologically order the yearly births in two departments, the 
ratio of those births can be thought to be essentially the same for the first six months 
and for the whole year. And extracting m1 first observations from the total series (m) 
is tantamount to drawing at random m1′ balls from an urn containing m′ balls, n′ of 



 105 

them white and m1″ balls from another urn containing m″ balls, n″ of them white. If 
m1′ + m1″ = m1 and m1′/m1″ very little differs from m′/m″ and if, as previously, the 
numbers are sufficiently large, the ratio n1/m1 will with high probability very little 
differ from n/m even if the ratios n′/m′ and n″/m″ considerably deviate from the 
chances p′ and p″ owing to an anomaly very unlikely in advance.  
    The remarks which were the object of this Note do not at all refute what was said 
in the main text; in our opinion, they are even quite independent. And it is not less 
permissible to replace posterior probabilities calculated from the total series by the 
product of probabilities obtained when separately considering the partial series. 
However, it can and even will happen when there are very large numbers that the 
posterior probabilities calculated for two different series will be very close to each 
other since the results obtained for the total series will with high probability lead to 
similar results for each partial series. A. A. C. 
    16. The study of dependent variables properly began with Markov.  
    17. This statement is borrowed from Bienaymé (1839, p. 188). [B. B.] 
    18. Bru referred here to Bienaymé (1839, p. 187) and Poisson (1837, p. 11).  
    19. Bru called this passage remarkable and stated that that appraisal of the aims of 
statistics was only definitively adopted in the second half of the 20th century 
(Neyman 1960). The same problem much interested Chuprov from the very 
beginning of his scientific career (Chuprov 1903). 
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Chapter 10. Experimental Determination of Mean Values  

by Observations and Formation of Tables of Probability 
    121. In statistics, mean values are determined for two different 
reasons which are preferably distinguished1. The means are often 
magnitudes whose knowledge is immediately interesting since their 
values directly influence physical and social phenomena. For example, 
the mean quantity of grain produced in a country directly influences its 
population and its entire economic system. The same can be said about 
the mean value provided by a tax, or import or export of some 
foodstuffs.  
    However, even more frequently means are only considered as 
results considerably independent from the oscillations of chance so 
that their variations can indicate more or less surely and rapidly the 
existence of changes in the intensity or manner of action of regular 
causes. Suppose for example that a general census of the population of 
a country is made and we calculate the mean age of all the inhabitants. 
In itself, this mean is not significant because there is no social fact 
directly depending on its value. Nevertheless, that value depends on 
the law according to which the population is distributed by age and the 
chances of longevity provided by the climate and habits of the people. 
Changes in all these circumstances or in one of them will be revealed 
by a change in the mean.  
    Suppose also that we extract the mean value of the stature of 
conscripts from the pertinent table2. If some new circumstance tends to 
improve or worsen the physical state of the country’s population, we 
will discover it by the change in that mean. For the mind research is 
facilitated when it considers a simple expression, even if only leading 
to incomplete and indirect consequences, rather than a set of 
complicated facts. 
    122. It is natural to ask whether values [estimators] differing from 
the ordinary mean will not in some cases fulfil the aim raised by 
statistics better, more promptly get rid of the oscillations of chance, 
more properly indicate the influence of constant and perturbative 
causes, or even more properly ensure comparisons in certain problems 
in law and political economy not to mention all statistical 
investigations3.  
    Thus, in France the law of 15 May 1818 prescribed that for 
estimating the tax on transfer of property the mean of market price-
lists for the previous 14 years should be calculated after excluding four 
extreme values, two maximal and two minimal4. The mean of the rest 
10 values then constituted the mean price of a usual year. The 
legislature perhaps wished to act in the interest of both the state and 
the taxpayers by protecting the collection of the tax as much as 
possible from the influence of chance. Whether that [probable] goal 
will be better attained in that way or by keeping to the ordinary mean, 
can only be known by comparing a large number of market price-lists 
calculated according to both methods. 
    Suppose that instead of 10 or 14 particular values we have 1000 or 
1400. Let aib (Fig. 4)             be the curve whose ordinates measure 
the pertinent probabilities and OA and OB, the extreme [particular] 
values. The usual mean will be close to OG with the ordinate Gg 
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passing through the centre of gravity of ABbga (§ 67). After cutting 
off portions ACca and BDdb with the area of each of them being 1/7 of 
the total area the mean taken in accordance with the law of 1818 will 
be close to OG′ to which corresponds ordinate G′g′ passing through 
the centre of gravity of the rest area CDdc. However, depending on the 
form of the curve it can happen that the modulus of convergence (§ 
69) for the rest area will considerably exceed the modulus for the 
entire area. The fortuitous deviation in both directions from the mean 
OG′ will then be contained in a narrower interval than the fortuitous 
deviation in both directions from OG in spite of the number of the 
particular values applied for an approximate determination of the latter 
exceeding that of the former in the ratio of 7/5. 
    Denote by OI the median value of the total area (§ 68), i. e., the 
value whose corresponding ordinate Ii divides the total area in two 
equal parts. The larger are the cut off parts ACca and BDdb (remaining 
equal to each other) as compared with the total area, the closer will 
ordinate G′g′ approach the ordinate Ii. It follows that in general a 
system similar to that which the law of 1818 provides for the usual 
value, and when the number of the applied particular values becomes 
very large, it will result in an intermediate value between the mean in 
the proper sense and the median value5.  
    During the years of very high prices the price of foodstuffs such as 
grain tends to rise above the mean much more than it lowers below 
that mean in the years of abundance. This is the same as saying that 
the mean OG exceeds OG′ and OI, so that the law of 1818 is more 
favourable for the taxpayer than it would have been if the ordinary 
mean were applied. However, independently from this circumstance, 
when considering that the price of foodstuffs usually oscillates within 
sufficiently narrow limits and only appears beyond them under the 
influence of violent and transient perturbative causes, we understand 
that the legislator wished to eliminate completely that influence by 
rejecting the extreme values which can not reckon in transactions 
between citizens and are wholly beyond the economic system of the 
country. 
    123. When means are determined for diverse parts of a complicated 
system we should attentively note whether they are compatible. When 
the means are determined separately one from another, the system can 
become impossible (§ 74). If for example a triangle should remain 
right when its sides vary, each side will have a mean value, but, taken 
together, they will not be compatible with a right triangle. […] If the 
sides and the angles of a triangle take various values, the mean values 
of the angles will remain compatible in that their sum will be equal to 
two right angles [?] and a triangle, or even infinity of similar triangles 
can be thus constructed whose angles will be those mean values.  
    The means of their sides, if only each mean is smaller than the sum 
of the other two, will apparently also belong to possible triangles. 
However, there will generally be no triangle with those mean values of 
angles and sides, and the mean area of each triangle will not coincide 
with the area of the triangle having mean sides, etc. Just the same, 
when measuring the dimensions of the diverse organs of many animals 
of the same species we can, and likely will arrive at mean values 
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incompatible either one with another and with the conditions of the 
species’ life.  
    We insist on that very simple remark because it seems to have been 
overlooked in a work otherwise really meritorious in which the homme 
moyen was defined and determined by a system of means derived from 
the measurements of stature, weight, physical strength, … of a large 
number of individuals7. Thus defined, the homme moyen is not at all 
the type of sorts of mankind but simply impossible; at least until now 
nothing authorizes us to think him possible. 
    124. Let aib (Fig. 1, § 67) be the curve representing the law of 
probabilities of magnitude x. Each ordinate such as Ii is proportional to 
the probability of the particular value measured by the corresponding 
abscissa OI (§ 65). For magnitudes applied in statistical research that 
law of probabilities is in general unknown in advance. If the number N 
of the observed particular values is extremely large, the number n1 of 
them situated between OA = a and OA1 = a1 will approximately be to 
N as the area AA1a1a to the total area Abba although the interval AA1 
can be very small as compared with the interval AB between the 
largest and the smallest possible values. 
    In other words, if the total area Abba is unity, n1/N will be the 
approximate measure of the partial area AA1a1a. If the interval AA1 or 
the difference (a1 − a) are very small, the partial area can be 
considered as an area of a rectangle. […] Therefore, when dividing 
AA1a1a or the number n1/N by the difference (a1 − a), the quotient can 
be considered without an appreciable error as a measure of the very 
little differing ordinates Aa1 and A1a1. More precisely, that quotient 
numerically expresses the value of the ordinate corresponding to a 
point situated on AA1 at equal distances from A and A1.  
    It is thus possible to determine empirically the law of probabilities 
of magnitude x by a sufficient number of statistically provided values. 
To achieve this, we decompose the total number N in numbers n1, n2, 
… of partial values situated between a and a1, a1 and a2, … The set of 
quotients 
 
    n1/N(a1 − a), n2/N(a2 − a1), …                                                (124.1) 
 
corresponding to the values of x equal to 
 
    (a + a1)/2, (a1 + a2)/2, …                                                      (124.2) 
 
constitutes a table of probabilities and determine as many points of the 
curve aib as there are terms in the series above. These points can be 
joined by a continuous curve thus providing a graphical representation 
of the law of probabilities. By calculation we can also get a curve with 
algebraically connected ordinates and abscissas passing through all the 
points determined by the table; indeed, mathematical analysis 
furnishes general pertinent formulas. Whether constructing it 
graphically or obtaining it by calculation, it is evident that, for the 
abscissas situated between two consecutive terms of the series (124.2), 
we should regard the values of the ordinates as almost precise, if, as 
we suppose, they are very close to each other and, moreover, if the 
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differences between the corresponding terms of the series (124.1) are 
sufficiently small as compared with one or another of these terms.  
    Therefore, each of the intervals (a1 − a), (a2 − a1), … should be a 
small fraction, for example, 1/100 of the range of possible values; if 
that range is not given in advance, 1/100 part of the interval between 
the largest and the smallest observed particular values. For 
constructing and applying the table, it is convenient to take equal small 
differences (a1 − a), (a2 − a1), … However, when indicating that in 
certain parts of the series (124.1) the differences between consecutive 
terms become too large for the second of the abovementioned 
hypotheses to be admissible, the interval between the corresponding 
parts of series (124.2) should be shortened. 
    125. For the value of some term of series (124.1), for example, of 
the i-th term, to be appreciably independent from the anomalies of 
chance, the corresponding number n1 should be considerable, at least 
of the order of hundreds. However, the probability of a notable error of 
each term of series (124.1) taken separately can be very low although 
because of their large number there will be a high probability that at 
least one of them is affected with a considerable error. Suppose that 
one of those terms essentially deviates from the law, apparently 
followed by its neighbouring terms situated both before and after it, 
without there being any reason to suspect that that law underwent a 
sharp change in the vicinity of the corresponding term of series (124.2). 
We should not therefore hesitate to reject the anomalous term from 
series (124.1) and to replace it temporarily [?] by a suitable value 
answering the law followed by those neighbouring terms and derived 
by the known interpolation formulas. 
    It nevertheless follows that for sufficiently guaranteeing that the 
random errors affecting each term in the table are contained within 
very narrow limits, the number N should be very large, much larger for 
example than would be sufficient for deriving with high precision the 
mean value of magnitude x or, under ordinary circumstances, the 
possibility of a simple event. When indicating that in addition the laws 
of probabilities studied by the statistician can experience notable 
perturbations during the time needed for accumulating such a large 
number of observations; and when reckoning with the chances of 
possible errors corrupting the treatment itself of observations, it will be 
understood that the construction of a table of probabilities is the most 
difficult work, as though a masterpiece of statistics. The numbers that 
can not be thought trustworthy in one study, can lead to concordant 
results in a new series of observation. Tables of probabilities with 
narrow intervals are only available for the duration of human life and it 
is necessary that they, being in agreement with each other, provided 
that perfect sureness which we discussed. 
    126. Let us return to the determination of mean values. If we 
constructed a table of probabilities having N particular values, 
sufficiently large for considering random errors affecting each term of 
the table insignificant, the mean value M will all the more be free from 
any appreciable error. A new series with a large number of m 
particular values though much smaller than N, will provide another 
mean value µ possibly affected by an appreciable error. Since M 
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tangibly coincides with the rigorous mean, (M − µ) will be the random 
error affecting the determination of the mean µ. 
    Before making a new series of observations, the probability P that 
the difference (M − µ) will be contained within the limits ± l is (69.1) 
 
    t = lg√m 
 
where g is the value of the modulus of convergence which is 
connected with the law of probabilities of the magnitude x and can be 
calculated by two different methods. The first of them presumes that 
the preliminary construction of the table of probabilities consists in 
algebraically expressing by interpolation (§ 124) the ordinates and 
abscissas of the curve of probabilities or the function denoted by fx in 
Note 3 to § 69 and apply to it the formula of integral calculus indicated 
there as though observations effectively determined the continuous 
sketch of that curve rather than a finite number of points through 
which or very close to them it should pas. 
    The second method consists in immediately applying the system of 
particular values provided by observation. No interpolation, never 
exempt from arbitrariness, is needed. And here is a very simple 
pertinent rule8: 
    Calculate the sum of the differences between the mean value and 
each of the particular values; divide the number of those values by 
twice that sum and extract the square root from the quotient. The 
result will be the modulus of convergence. 
    For writing this rule algebraically, denote by x1, x2, … the N 
particular values. Then 
 

    
2 2

1 2

.
2[( ) [( ) ...]

N
g

x M x M
=

− + − +
  

 
We can also write (Note 3 to § 69) that 
 

    
2 2 2

1 2 1 3 2 3

,
2[( ) ( ) ( ) ...]

N
g

x x x x x x
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2 2 2
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1
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g
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=
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or even express g in other forms which can be successfully applied 
according to circumstances. 
    When N is very large, the calculation of the squares of all the 
differences is impracticable. However, in applying the rule, all the 
particular values contained within interval (a1 − a) supposed to be very 
short can be regarded as being equal one to another and to (a1 + a)/2. 
The number of the particular values is n1; multiply it by  
[(a1 + a)/2 − M]2 and the sum of all such products for all the intervals 
(a1 − a), (a2 − a1), … can be taken as that sum of the squares of 
differences between M and each included particular value.  
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    Still more exactly, multiply by n1 the square (α1− M)2 where α1 is 
the mean of all particular values contained between a and a1 and repeat 
the same for each partial interval. For determining the modulus of 
convergence this second method does not suppose a preliminary 
construction of the table of probabilities. Actually, this modulus can, 
like the mean, and for the same reason, be determined with a sufficient 
precision by a number of particular values not at all sufficient for 
precisely constructing that table. 
    127. It follows from that remark that, when denoting by ξ1, ξ2, … 
the m particular values in the new series of observations, the number 
 

    
2 2

1 2

γ
2[(ξ µ) (ξ µ) ...]

m
=

− + − +
                                    (127.1)  

 
will little differ from g, and the two fractions, (g − γ)/g and (M − µ)/M, 
will be in general of the same order of magnitude. The mean µ is, 
according to the hypothesis, very close to the mean M and γ is also 
approximately equal to the modulus of convergence g.  
    Suppose now that we only have the series of m particular values ξ1, 
ξ2, … insufficient for determining the mean M without an appreciable 
error but quite enough for the random error (M − µ) to be numerically 
very small. The limits ± l within which the error is contained with 
probability P is provided without an appreciable error by the formula  
t = lγ√m. Now, l is a very small magnitude and γ also differs from the 
modulus g by a very small magnitude, and the error that affects the 
value of l because of replacing g by γ is very small even as compared 
with l, of an order neglected in approximate calculations. Therefore the 
application of mathematical symbols allows to present the 
demonstration in a more rigorous form although the basis of reasoning 
does not change9.  
    For the same value of P the interval 2l of the limits of the error is 
inversely proportional to γ√m, see (127.1). That product can be 
therefore taken as the measure of precision with which the unknown M 
is determined when assumed to be equal to µ as provided by the 
system of m particular values ξ1, ξ2, … In other words, that product is 
the weight of µ. It would be appropriate (§ 107) to accompany the 
means µ in statistical tables by the corresponding weights γ√m 
determined by the system itself of observations. 
    128. A new series of m′ particular values will provide a mean µ ′ 
differing from µ although the law of probabilities is not supposed to 
change from one series to another. And we have, after accomplishing 
the series (m) and before the series (m′) is observed, the probability P 
that the difference (µ − µ ′) will be contained within the limits ± l′ as 
[indirectly] provided by the formula: 
 

    
γ

.
l mm

t
m m
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=
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    If the total series (m) is decomposed in two partial series formed by 
m1 and m2 particular values with magnitudes µ and γ becoming 
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respectively (µ1, γ1) and (µ2, γ2), and supposing that the law of 
probabilities of magnitude x is the same in both partial series, we will 
have in advance, before determining by experience the numbers µ1, µ2, 
γ1, γ2, probability P that the difference (µ1 − µ2) is contained within the 
limits ± l′ given by formula 
 

    1 2

2 2
1 1 2 2
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Now we can calculate the posterior probability П that (µ1 − µ2) = δ as 
given by experience indicates a change in the law of probabilities 
between the series (m1) and (m2).  
    Instead of comparing the two partial series with each other we can 
compare (m1) and (m) and the analogy formulated in § 101 will 
sufficiently indicate that the limits of the difference corresponding to 
probability P will be determined from the formula10 
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    129. All the discussion above concerning the interpretation of 
changes occurred or seemed to have occurred in the chances of an 
event during the passage from one series of observations to another is 
evidently applicable to changes in the mean values. We will not 
reproduce it and restrict our considerations by remarking that any 
existing traces of solidarity of trials close to each other in space or 
time among the diverse fortuitous determinations of the same 
magnitude can be revealed. When combining all the particular values 
taken two from two, the mean of the squares of the obtained 
differences will depend on modulus g or coefficient γ (§ 126). Traces 
of solidarity still remain if it notably exceeds the mean of the squares 
of the differences obtained when combining each particular value with 
its preceding or immediately following, or with those situated 
sufficiently close11. 
 

Notes 
    1. On the two types of means (see below in text) see Sheynin (2007, § 5). 
    2. Two authors had discussed the stature of conscripts before Cournot and 
Quetelet (1846) studied it after him. [B. B.] 
    3. Many scholars of the 18th century studied this problem. [B. B.] 
    4. In the theory of errors, rejection of outliers is a most delicate operation, in 
particular because of the unavoidable systematic errors. 
    5. From Note 5 in Chapter 6 it follows that the empirical determination of a mean 
value always gets more rapidly rid of anomalies of chance than the median value. 
This, however, does not prevent the empirical determination of a value situated by its 
definition between the values of the mean and the median to get rid of those 
anomalies still more rapidly6. A. A. C. 
    6. For some distributions, and when the distribution is unknown, the median is 
more reliable than the mean. 
    7. Bru remarks that Cournot indirectly referred to Quetelet (1835) and that the 
latter (vainly) objected to criticisms. 
    8. Cournot apparently followed Fourier (1826/1890, p. 532). [B. B.] 
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    9. See Poisson (1829). [B. B.] 
    10. Cf. § 101. [B. B.]  
    11. Bru remarked that Cournot had thus offered the first test of independence of a 
sequence of observations based on the coefficient of autocorrelation.  
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Chapter 11. Means of Measurements and Observations 
    130. The theory of convergence of the mean values [to their limits] 
is applicable to a problem of great importance for all the physical 
sciences: to determining the probable limits of the error of a numerical 
result when taking the mean of a large number of values corrupted by 
some errors.  
    Denote by fx the function expressing the probability of error x in the 
measure of magnitude a; by ε, the mean of the absolute values of the 
error x; by g, the modulus of convergence whose value implicitly 
results from the form of the function fx; by m, the number of the 
particular values from which the mean was taken and which we 
suppose to be sufficiently large for applying our approximate formulas 
(Note 5 in Chapter 6); by α, the mean of the particular measures a1, a2, 
… It will converge to a fixed magnitude a + ε and there will be 
probability P that the fortuitous error (a + ε − α) will be contained 
within limits ± l determined by formula (69.1). It follows that if ε = 0, 
by virtue of the function fx P will be the probability that the error still 
corrupting the mean α is contained within the limits ± l.  
    When presuming that the constant ε = 0, it is supposed that in 
general the curve with ordinates fx is symmetric with regard to the y-
axis […]. Indeed, this second hypothesis, more particular than the first 
one, necessarily demands that the error of the mean value and the 
median is zero (§ 68). On the other hand, if that symmetry is lacking, 
such a concurrence of circumstances is needed for the disappearance 
of ε that this case can be considered quite unlikely. 
    If the curve of probabilities is not symmetric with respect to the y-
axis, and the constant ε takes an appreciable value, it is said that a 
cause of a constant error corrupts the series of measurements due to a 
defect in the construction of the applied instruments, or in the 
observer’s organs of sense, or his manner of work. A series of 
measures thus affected should be rejected as being improper for 
determining the real value of magnitude a. The experimenter’s 
sagacity principally consists in discovering the means for getting rid of 
the influence of such causes of errors, for analysing, studying and 
eliminating their effect.  
    It is doubtless infinitely unlikely that the constant ε is strictly zero, 
however thoroughly are the instruments manufactured and the 
measurements themselves taken for avoiding all the causes which 
render errors of one sense more (or less) probable than those of the 
contrary sense. In general, mathematical absoluteness can not be 
achieved in those pursuits which depend on organs of sense and the 
interaction of man and the material world. Had it been otherwise, 
when sufficiently increasing the number of observations, formula 
(69.1) would have led to an arbitrary precision of the measured 
magnitude a; to its expression, for example, by 20 correct decimals 
just as in the case of an incommensurable root or the ratio of a 
circumference to its diameter. Such a consequence is absurd, and we 
will return to the discussion of the causes that necessarily restrict the 
precision of measurement of each kind of magnitudes whichever is the 
number of their observations. 
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    In the first place we suppose, like everyone who had treated this 
problem expressly or tacitly did, that the constant ε = 0 or at least 
negligible as compared with the error which can corrupt each 
particular measure or with the mean of these errors without 
considering their signs. It is thought possible to determine after 
observation, simply by inspecting the particular values, whether they 
are compatible with the hypothesis of symmetry corresponding to the 
condition ε = 0. If, for example, m is at least of an order of hundreds, 
and the ratio of the number of the particular values exceeding α to m 
appreciably differs from 1/2, we are notified that the median value 
does not coincide with the mean value as demanded by the hypothesis 
of symmetry. Other, infinitely many other methods of testing can be 
proposed.  
    When the measures are taken with sufficient care, the probability of 
error x should decrease very rapidly as x numerically increases. And 
the probability of an error not very small as compared with a, for 
example its 1/20 or 1/30 part, should be regarded as very small or as 
approximately zero. The curve of probabilities then becomes bell-
shaped. We can not assign a limit at which the chances of error 
become exactly zero (§ 66), but the chances of the values of x being 
beyond certain limits are so slim, that we are quite authorized to 
neglect them1. 
    131. In general, the form of the function f is unknown and can not 
be assigned in advance. However (§ 127), for a large number of 
measurements it is permissible to assume the number 
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given by those observations themselves as a sufficiently close value to 
the modulus g. After thus calculating γ, the product γ√m can 
accompany the mean α as measuring its weight (§ 127).  
    132. When diverse measures are taken by different observers by 
different instruments or under dissimilar circumstances, the probability 
of error x will vary from one measure to another. In such cases the 
function fx should be understood as a mean of all values provided by 
the different laws of probabilities proper for each measure as I 
explained in a general manner in § 81. 
    Suppose that a total series of m measures taken by the same 
observer, or resulting from observations made by the same instruments, 
or under similar circumstances are grouped in partial series denoted by 
subscripts 1, 2, …, i, then the weights γ√m will be expressed 

respectively by 1 1 2 2 γ ,  γ ,...,  m m γ .i im   

    Assuming  
 
    (α1 + α2 + … + αi)/i, or, less defective, (m1α1 + m2α2 + … + miαi)/m 
 
as the value of magnitude a, we do not properly take into account the 
weights of each particular result. If, for example, these values in series 
(m1) very little differ from their mean α1, much less than the values in 
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(m2) differ from their mean α2, γ1 will be much larger than γ2 and 

1 1 2 2γ  can much exceed γm m  even when m1 is appreciably smaller 

than m2. 
    Common sense also tells us that a less numerous series composed of 
better concordant observations should inspire more confidence than a 
more numerous series manifesting larger differences. The theory ought 
to specify the indications of common sense and provide a formal rule 
for combining the partial results to narrow as much as possible 
(without changing the probability) the limits of the error which should 
be thought to corrupt the final result2. This rule consists in taking the 
mean  
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as the value of magnitude a, i. e. in entering each partial mean 
proportionally to the square of its weight and thus providing the 
general mean. We will then have probability P that that error is 
contained within the limits ± l given by the equation [by the formula] 
 

    2 2 2
1 1 2 2γ γ ... γ .i it l m m m= + + +   

 
    133. The required magnitude often depends on many other directly 
measured magnitudes. As a simplest example, suppose that it is 
required to calculate the height of a tower by solving a right triangle 
whose base beginning at the tower’s foot and the adjacent angle are 
measured. The height is a function of those elements and its error 
depends on the errors of both measurements. Or, when calculating the 
area of a triangle as a function of its sides […], its error depends on the 
errors of the latter. Finally, imagine a network of triangles like those 
constructed during large geodetic operations. The error of one of its 
calculated sides results from the errors of base and angle 
measurements.  
    Denote by a, b, c, … the magnitudes whose direct measurements 
provided mean values α, β, γ, …; by h, a magnitude depending on 
them; and by η, the corresponding value of h […] 
 
    h = F(a, b, c, …)                                                        (133.1) 
 
if a, b, c, … are replaced by their means α, β, γ, … If h is a linear 
function (§ 74) of a, b, c, …, the value η will be the mean of h1 =  
F(a1, b1, c1, …), h2 = F(a2, b2, c2, …), … […] In general, however, F 
is some non-linear function and this property will not persist. 
    Denote  
 
    h − η = δ, a − α = δ1, b − β = δ2, c − γ = δ3, … 
 
so that δ1, δ2, … are the errors corrupting the means of the measures of 
magnitudes a, b, c, …, and δ is the error in the result of determining h. 
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In general, according to the degree of complication of the function F, 
that error will be connected in a more or less sophisticated way with 
the errors that corrupt each direct measure. However, the aim of 
researching the probability of the resulting error is much simplified 
and admits of general solution when each constituent error δ1, δ2, … is 
very small. This premise is allowed when the discussed operations are 
precise and merit a rigorous discussion and when the means α, β, γ, … 
result from a large number of partial measures.  
    Imagine that we replace h, a, b, c, … in equation (133.1) by their 
exact values 
 
    η + δ, α + δ1, β + δ2, γ + δ3, …, 
 
and that, because of the small values of the errors δ1, δ2, δ3, … we can 
neglect in calculations their products and powers. The theory of 
functions [!] tells us that there exists a linear equation between them 
 
    δ = C1δ1 + C2δ2 + C3δ3 + …                                         (133.2) 
 
where C1, C2, … are constant numbers, positive or negative. The 
smaller is the numerical value of C1, of C2, … the less δ1 or δ2, or … 
influences the error3 affecting the evaluation of magnitude h. 
    And so, suppose that P is the probability that the constituent errors 
δ1, δ2, … are contained within the limits ± l1, ± l2, … Then, there will 
be the same probability P that the resulting error δ is contained within 
the limits 
 

    2 2 2 2 2 2
1 1 2 2 3 3 ....l C l C l C l± = ± + + + . 

 
If P = 1/2, the limits l1, l2, … will be the median values of the 
constituent errors, and l, the median value of the resulting error. 
    Among the different systems of the elements a, b, c, … which can 
be applied for calculating the magnitude h, there is one which renders 
the smallest possible value to the previous expression of l. Such 
systems are the most advantageous for determining the magnitude h. 
Thus, when measuring the height of a tower we easily discover that in 
the most advantageous triangle the angle adjacent to the base is closest 
to 45°. Indeed, the error in measuring it least influences the calculated 
value of the height. In much more complicated operations, notably in 
large geodetic networks, the derivation of the most advantageous 
systems becomes at the same time most delicate and most important. 
    134. It frequently happens that the directly measured magnitude is 
not at all the same in each observation. For example, when precisely 
determining the height of a tower we can measure different bases for 
which the adjacent angles will also differ instead of measuring many 
times the same base (and the same angle). In trigonometric operations 
and physical trials the circumstances can be changed almost arbitrarily, 
but in such sciences as astronomy trials are replaced by observations 
properly understood, and meaning that the conditions are not at the 
observer’s will. Thus, for determining the elements of a comet it is 
necessary to find out its astronomical places at different times and its 



 118 

altitudes and hour angles to be [therefore] observed under very 
different circumstances, possibly very unequally favourable for the 
exactness of the results.  
    When combining a large number of observations for deriving very 
precise results but rendering calculations practicable it is necessary 
that the unknowns sought were linear functions of directly measured 
magnitudes. That essential condition is fulfilled when approximately 
having in advance the values of certain elements which only need 
corrections and the values which the observations should assign to 
directly measured magnitudes. Suppose for example that we wish to 
determine quite certainly not the elements of the parabolic motion of a 
comet, but those of the elliptic motion of a planet already known with 
a good approximation. The angular magnitudes (the right ascension 
and declination) which fix the astronomical places of the planet at 
given epochs can approximately be assigned in advance. Observations 
provide corrections for each of these angular magnitudes or the 
differences between the calculated and observed magnitudes. […]  
    135. We will begin by treating the case of correcting one element 
when each observation only measures one magnitude. Denote by a1 
the small correction of measurement α1, corrupted by error δ1. Then 
 
    a1 = α1 + δ1. 
 
Let also x be the correction of the element resulting from all the 
observations. Then 
 
    a1 = C1x + c1 
 
where C1 and c1 are the known numerical coefficients. Introduce for 
the sake of brevity 
 
    α1 − c1 = ∆1, 
 
then 
 
    δ1 = C1x − ∆1.                                                                    (135.1) 
 
    Neglecting the error δ1 we will have x = ∆1/C1. When repeating the 
same procedure with the results of a large number of observations, we 
will derive the same number of different values of x and can calculate 
their arithmetic mean as though the particular values of x were 
provided by direct measurements. However, this manner of operating 
does not conform to the indication of reason. Actually, it is clear that 
the magnitude of the error δ1 influences the value of x derived from 
formula (135.1) the less the larger is the value of the coefficient C1. 
However, when simply adopting the mean of all the values of x we 
consider all pertinent particular observations without distinguishing 
among them the more or the less advantageous. 
    For avoiding this inappropriateness the geometer Cotes had 
proposed a rule which astronomers have been applying owing to its 
simplicity4. It consists in adopting  
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    1 2 3

1 2 3

...

...
x

C C C

∆ + ∆ + ∆ +
=

+ + +
                                                    (135.2) 

 
where ∆2, C2, ∆3, C3, … are similar to ∆1, C1 for observations 2, 3, … 
That rule is reduced to supposing that the sum of the errors disappears:  
δ1 + δ2 + δ3 + … = 0 or to taking the mean of the values ∆1/C1, ∆2/C2, 
… given by observations whose numbers are proportional to C1, C2, … 
Thus, each observation influences the definitive value of the unknown 
x the stronger the more advantageous it is by itself for deriving that 
value. 
    All this is nevertheless only a point of view based on an arbitrary 
hypothesis that the errors of all the observations oscillate within the 
same limits according to the same law of probabilities. Moreover, even 
under that hypothesis the described procedure is inexact. Laplace5 had 
proved that we should adopt 
 

    1 1 2 2 3 3
2 2 2
1 2 3

...

...

C C C
x

C C C

∆ + ∆ + ∆ +
=

+ + +
                                       (135.3) 

 
for narrowing as much as possible the limits ± l within which the error 
of the value x should be contained with probability P. These limits are 
then obtained from the equation 
 

    2 2 2
1 2 3 ...t lg C C C= + + +                                            (135.4) 

 
where g is the modulus of convergence for the common law of 
probabilities of the errors δ1, δ2, …  
    When the correction x is defined by formula (135.2) or by the Cotes 
rule the limits ± l are connected with probability P by the equation 
 

    1 2 3 ...C C C
t lg

m

+ + +
=  

 
where m denotes the number of observations. And by the virtue of the 
principle which we repeatedly cited (§§ 73, 77) the coefficient of l in 
that formula is always smaller than in formula (135.4). For an 
approximate value of the unknown modulus g in that formula we can 
take the number  
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given by the observations themselves6 and the product  
 

    2 2
1 2γ ...C C+ +  

 
expresses the weight of the correction x. 
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    If the law of probabilities of the error and therefore the modulus of 
convergence vary from one observation to another, but the curve of 
probabilities nevertheless remains symmetric and formulas (135.3) and 
(135.4) will be replaced by 
 

    
2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
1 1 2 2 3 3

...
,

...

g C g C g C
x

g C g C g C
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    The value of x provided by the formula (135.3) results from the 
condition that the sum of the squares of the errors δ1, δ2, … or the sum 
 

    2 2
1 1 2 2( ) ( ) ...C x C x− ∆ + − ∆ +   

 
is minimal so that that formula is called the rule of least squares of 
errors7.  
    136. The same series of observations can often be applied for 
determining corrections to many elements at the same time. For 
example, observations of the places of a planet should serve for 
simultaneously correcting the six elements of its elliptic motion or the 
masses of perturbative planets if perturbations are considered when 
studying that motion9. Equation (135.1) will be replaced by 
 
    δ1 = C1x + C′1x′ + C″1x″ + … − ∆1. 
 
    Here, x, x′, x″, … denote the corrections sought, C1, C′1, C″1, …, 
numbers provided by the theory and ∆1 is a number derived from the 
observations themselves. The Cotes rule is not here applicable. How to 
combine equations of that form for obtaining the same number of 
resulting equations as there are unknowns x, x′, x″, … remained 
absolutely indeterminate until Legendre proposed the rule of least 
squares for eliminating that indeterminacy. Actually, the minimal 
value of δ1

2 + δ2
2 + … can always be derived whatever is the number 

of the unknowns x, x′, x″, … which enter in each function δ1, δ2, … 
    137. We should not forget that all these rules are based on the 
hypothesis that we already have the values of the elements which 
should be corrected with a good approximation. It is then possible to 
obtain a very high probability P that the error of the corrected value is 
contained within very narrow limits. This, however, does not prevent 
later observations from discovering that the corrected value is still very 
inexact if its reputedly very close value applied for calculating the 
correction x and the probability P was, on the contrary, considerably 
corrupted. 
   That circumstance occurred not so long ago when determining an 
important element of the Solar system10. By measuring the elongation 
of Jupiter’s satellites the astronomer Pound, a contemporary of 
Newton, found that the mass of Jupiter was equal to 1/1067 = 
0.00093721 of the mass of the Sun. By applying a method which I 
sketched above to solve 126 initial conditions complied by Bouvard 
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for the motion of Jupiter in longitude and 129 equations for the motion 
of Saturn, Laplace decreased that value by 0.00000294 fixing the mass 
of Jupiter at 0.00093427. He then found probability P equal to [found 
odds of] 106:1 that the relative error of the corrected value was less 
than 1/100 in either direction, or that the mass of Jupiter was contained 
in the interval 0.00092493 − 0.00094261.  
    Nevertheless, it was later discovered that the perturbations in the 
motion of the small planets and of the Encke comet11 occasioned by 
the action of Jupiter demanded an attribution of a more considerable 
mass to Jupiter. Finally, Airy discussed the Pounds observations anew 
and discovered an error so that the mass of Jupiter became 0.00095357. 
This value is in accord with the result of calculations of the 
perturbations of the small planets and is now admitted by the 
astronomers although it very appreciably exceeds the limits assigned 
by Laplace. 
    The defect of his conclusion could have been occasioned by wrong 
or incomplete terms in the expansion of the approximate formulas 
providing planetary perturbations or by errors in treating the initial 
equations or even by an error in the hypothesis according to which the 
law of probabilities of the errors of the applied observations remained 
without change and the positive and negative errors of equal 
magnitude were equally probable. However, this defect can also be 
due to the prior premise that the Pounds measures only demanded very 
small corrections.  
    138. This is the place to return to the remark of § 130 that it is 
absurd to pretend that a determination of a continual magnitude with 
an arbitrary precision is possible by indefinitely multiplying its 
observations or measurements. If, for example, an observer wished to 
measure a distance to within 20 decimals12, it will be at once evident 
that at least the ten last digits were quite arbitrary and have no relation 
to the veritable numerical expression of that distance. After a large 
number of such expressions is calculated, it will be discovered either 
that each observer had irregularly and randomly chosen the last 10 
digits so that the mean of the numerical values of the digits of the same 
order was the mean of 0, 1, 2, …, 8, 9, that is, 9/2; or, that the same 
causes led all the observers to prefer some digits to other and then that 
mean could have much differed from 9/2 but, being quite independent 
from the pertinent veritable digits, will not be less random. 
    It would be a grave mistake to infer from our example that, under 
conditions of actual experimentation, it is practically possible to 
measure a magnitude to within 10 decimals. On the contrary, we 
introduced an exaggerated hypothesis showing as clearly as possible 
the need to admit a limit to precision whatever is the number of 
particular measures or observations.  
    A singular fact! There are no continuous magnitudes yielding to 
empirical determination with an arbitrary approximation with the 
exception of constant chances of the arrival of phenomena resulting 
from the concurrence of constant and fortuitous causes. If, for example, 
in a given climate the mean chance of a male birth does not vary in 
time or with a sudden change in social habits, we imagine that it can 
be determined with arbitrary precision by an indefinite accumulation 
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of observations. Indeed, we really understand that a perfectly exact 
enumeration is possible [?] but at the same time we deny that a 
continuous magnitude can be thus determined by measuring it with our 
instruments and applying our organs of sense. 
    139. Errors in measuring, strictly speaking, and the indeterminacy 
necessarily affecting the reading of the measure should be clearly 
distinguished. Thus, when measuring an angle, independently from 
errors of sighting, centring, etc, which can vary the measure much 
greater than the value of the smallest division of the limb, there is the 
indeterminacy attached to reading each measure. It occurs since the 
observer either neglects13 or arbitrarily estimates the fraction smaller 
than that value. Since this is an important point for sensibly 
interpreting all the results of experimental sciences and since it did not 
gain its merited attention, I will be excused for entering here into some 
minute details. 
    To each kind of magnitudes and manner of adopted measurement or 
observation there corresponds a limit after which the fractions of unity 
become indiscernible. Imagine such a magnitude as a straight line [as a 
segment] one of whose ends is fixed, and the other mobile. That line is 
divided into equal parts, w [in length], counted from the fixed end, and 
so short that the observer can not discern their subdivisions. And if the 
point on the variable end of the line is situated more closely to the n-th 
division rather than to any other, the observer either assumes that the 
value of the measured magnitude is nw thus neglecting the difference 
smaller than w/2 in either direction or wishes to estimate this 
difference, but his vision fails him and the estimation is purely 
arbitrary and fortuitous; he has no intrinsic reason to choose one value 
rather than another. The mean of a large number of such estimations is 
± w/4 for positive and negative differences.  
    Suppose that OA is the veritable value of the measured magnitude. 
The errors of measurement in its proper sense can extend to points m 
and n to the left and right from A. If there is no indeterminacy in the 
reading, the mean of a large number of measures will be equal to the 
distance from O to the centre of gravity of the bar mn (§ 67) if fx or the 
probability of the error x of measurement expresses the density of the 
bar at point x. That mean coincides with the magnitude OA if the 
density varies symmetrically with respect to point A. And this is what 
becomes with the mean because of the indeterminacy of reading. 
    Suppose that marks 1, 2, 3, … separate into two equal parts the 
consecutive divisions of the bar from m to n. We should imagine the 
mass of the bar between 1 and 2 concentrated not in its centre of 
gravity but in point a separating the interval between these marks into 
two equal parts. The same consideration concerns marks 2 and 3 and 
the point b etc. The distance of O from that system of material points 
represents the mean of an infinite number of observations and in 
general differs from OA or the measured magnitude.  
    What we called reading can be replaced by another method of 
estimation by the human organs of sense and affected by similar 
indeterminacies. Thus, a keen sense of hearing allows people having a 
good ear for music to estimate with a good approximation the tonic 
syllables and therefore to measure the duration of the vibratory 
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motions producing the sound. However, this faculty has its limits so 
that we arrive at such small fractions of the tone that even the best 
exercised ear can not estimate them anymore or the estimation 
becomes quite arbitrary. 
    We have supposed that an arbitrary estimation of differences 
smaller than w/2 repeated a large number of times by the same 
observer should result in ± w/4 for the mean of positive or negative 
differences. Had it been otherwise with the same observer invariably 
tending to estimate wrongly in either direction14, the means would 
have been different and irregularly changing from one observer to 
another. It is therefore necessary to accumulate many series of 
measures taken by different observers or made under different systems 
of experimentation for providing a fixed mean, no less prone, however, 
to differ from the veritable value by magnitudes of the order of the 
indeterminacy of reading. 
    In general, whether the operation leading to the measurement of a 
continuous magnitude is delicate or crude, complicated or simple, we 
should recognize that independently from the causes of random or 
constant errors occurring because of the defects of the method, of the 
construction of the instruments, perturbative influence of the 
environment, distractions of the observer and brief or permanent 
disorder of his organs, − there independently exists an indeterminacy 
inherent in the reading or its substitute. It is therefore impossible to 
exceed a certain degree of precision whatever is the number of partial 
measures combined for determining the mean. 
    140. If desirable, the errors due to the indeterminacy of reading can 
be combined with those caused by the defects in the construction of 
the instruments and by the limits at which the hand of their constructor 
absolutely cease to be guided by his senses (§ 43) and only obeys blind 
and fortuitous causes. 
    If it is only necessary to establish differences between magnitudes, 
instruments can aid the senses of man unboundedly perfecting them. 
Thus, optical instruments which magnify ever more allow a 
classification of distances or volumes by the order of their magnitude, 
a feat impossible for the naked eye or less powerful instruments. 
Balances and thermometers of ever greater sensitivity establish 
inequalities of weights or temperatures imperceptible for less delicate 
instruments. However, when it is required to measure those differences, 
to compare them with some magnitude or with a unit of magnitude, 
these very sensitive instruments, excellent as indicators, do not help 
anymore because of the error of comparison.  
    Imagine indeed a thermometer capable of indicating variations of 
temperature to 0.01° whose range is very restricted because of its 
sensibility, for example to the interval of ca. [40, 45°]. The divisions 
of that thermometer are prone to irregularity and in addition, even if 
they are perfectly regular, before measuring a temperature it is 
necessary to establish the point of the scale corresponding to point 
zero on the standard thermometer and the ratio of the former’s 
divisions to that of the latter. The precision of all these operations 
which we understand as comparison depends on the precision of the 
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ordinary thermometer rather than on the degree of sensibility of the 
auxiliary thermometer. 
    When measuring a long distance by successively laying out a unit of 
length, or a large volume by scooping out its contents etc, the error 
inevitably affecting the comparison of the applied instrument as a unit 
of measure, affects all the partial measures in the same way. 
Compensation does not at all destroy the partial errors in the final 
result. Thus, when measuring a distance of about a kilometre with an 
error of the applied metre being 0.1 mm, the resulting error will be a 
decimetre. 
    In general, the measure of magnitudes with an arbitrary unit or such 
whose zero point should be fixed by preliminary experience is less 
precise than the measure of other magnitudes since the errors of the 
measurement itself are complicated by the errors of comparison. For 
this reason, other things being equal, distances are measured less 
precisely than angles and densities, more precisely than temperatures. 
    141. In the actual state of physical sciences, there are hardly any 
measures the errors of whose measurements are not complicated by 
errors affecting many other elements, whether the observer accepts 
their previously known numerical expressions or determines them 
himself. It is evident that the degree of precision of a final result in 
general depends on that of the least precise element and that 
calculation itself, however precise, can not render greater precision to 
the final numerical expression than inherent in the initial numerical 
data. It is therefore illusory to divide or extract a root up to the seventh 
decimal when having the initial data exact to within the fourth. 
    It should be recognized that the possible degree of precision is 
attained when a new series of measuring a magnitude a maintains 
intact the decimals of its previous numerical expression up to n 
inclusive but imprints quite irregular variations on the next digits. The 
(n + 1)-st digit can be, for example, 6 in the first series of trials, 2 and 
9 and … in the second, the third, … series, and their mean for a large 
number of series will approximately be 9/2. It is therefore illusory to 
preserve digits of the (n + 1)-st and next orders. On the contrary, the 
previous digits should be thought free from all the errors occurring 
because of the indeterminacy of reading and similar causes. They are 
certain if only all observations are free from the causes of a kind 
which an exact theory renders impossible and which affects the 
decimals of those previous orders. 
    If the digits of the (n + 1)-st order vary in new observations in such 
a manner that some of them occur oftener than the others, or if their 
mean appreciably differs from 9/2, they are still uncertain but should 
be preserved hoping that after sufficiently multiplying the measures 
they will be exactly determined. Advances in measurement and 
experimentation draw back the limits of possible precision. Digits of 
the (n + 1)-st order impossible to be determined by previous 
procedures can become derivable and usefully combined with those 
established by new methods provided that they were not assigned 
purely arbitrarily. 
    142. If a magnitude is composed of two parts, one of them 
computed and the other one measured, the study of its degree of 
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precision can only concern the latter part. Thus, the mean tropical year 
is composed of 365 and a fraction of mean solar days. There is 
evidently no incertitude in the whole number of days and the 
measuring of that fraction means evaluating those continuous 
magnitudes which only admit of a limited precision.  
    It is quite understandable that if the calculated parts are not, or not 
thought to be strictly equal to each other, the study of the degree of 
precision should concern, as usually, the entire magnitude. 
    143. Digits which we call decimals can denote natural numbers or 
decimal multiples of unity. Suffice it to replace the decimal point or 
change the unit with which a magnitude a is compared. If a is a 
distance, the unit can be a millimetre, a metre or a kilometre. Its choice 
is not absolutely arbitrary since it is absurd to evaluate in millimetres a 
geodetic distance which can only be determined to within a few metres 
or measure in metres an astronomical distance in which remains an 
incertitude of many kilometres. Even the radius of the Earth’s orbit 
becomes too small as a unit if required to express in numbers the 
distance from the Sun to the nearest stars.  
   In each case the limit imposed on the degree of precision determines 
the limits for the choice of the unit with which the pertinent magnitude 
is to be compared and the number of digits with which it is to be 
exactly determined. That indicator of precision varies from one epoch 
to another and even in the same epoch from one branch of natural 
philosophy to another15. It evidently is not the same in astronomy and 
chemistry, in optics and acoustics or electricity. We do not go further 
in that delicate discussion and will only provide a few examples 
suitable for orienting the readers’ minds. 
    144. First example. After collecting in Paris a large number of 
particular pendulum observations made in different places according to 
the rules of an exact theory and taking into account all their necessary 
corrections to render them quite comparable, we will obtain the length 
of a simple seconds pendulum. Here are the results. [Cournot provides 
a table of 10 values obtained by various authors from J. Picard to 
Bessel.] 
    The first measure by Picard in the 17th century barely differs from 
the mean of the results achieved by such able observers who had not 
neglected any improvements prompted by the advances in physical 
sciences and calculations. We conclude that it is impossible to vouch 
either for hundredths of a millimetre in those measurements or for 
obtaining them with more than 4 exact digits. 
    Second example. In his memoir on the determination of the density 
of the Earth, Cavendish (1798) reported 29 results in which the density 
of water was taken as unity. [Cournot provides a table of those results.]  
    The mean is 5.48, the sum of the squares of the deviations [from the 
mean] is 1.1967, the weight of the [final] result is 18.745. Even money 
can be bet on the deviation of the mean 5.48 from the absolute mean to 
be contained within interval ± 0.026, and the existence of a six times 
larger deviation is extremely improbable.  
    In 1837, F. Reich [1799 – 1882] in Freiberg repeated the Cavendish 
experiment and obtained [Cournot provided a table of means of 14 
groups consisting of 2 – 6 observations.] The general mean of the 57 
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observations was 5.44 in good agreement with Cavendish. The 
difference is of the order easily explained by anomalies of chance. 
However, at least the third digit should be considered uncertain. 
    At the same time, being encouraged by the Royal Society, F. Baily 
made more numerous experiments varying the manner of suspending 
the oscillating needle and applying balls of differing materials and 
diameters. The summary of his 2004 experiments is shown below. 
[Cournot provides a table showing the materials and diameters of the 
balls, the number of experiments made and the appropriate means, all 
this for each of the three manners of suspending the balls.]  
    The general mean was 5.67. However, the divergence of the results 
for the materials of differing densities and manners of suspending the 
balls leaves no doubt in the existence of causes of constant errors. It is 
only possible to conclude from a very large number of experiments 
similar to those of Cavendish that the mean density of the Earth little 
differs from 5.5. This, however, does not yet prove that the veritable 
value of that mean density actually very little differs from 5.5. Indeed, 
the ingenious Cavendish method is connected with a cause of a 
constant error which affects all the similar experiments, and 
Maskelyne, by his very precise observations of the deviation of a 
plumb line made in 1774 at the foot of mount Shehallien16 in Scotland 
is known to have derived 4.5 for that same density. 
    Third example. Consider finally the series of experiments made 
recently by J. B. A. Dumas for determining with a higher degree of 
precision the composition of water and for verifying the theoretical 
law of Dr. Prout according to whom the chemical equivalents (§ 136, 
Note 9) are exact multiples of those equivalents for hydrogen. 
Therefore, if the weight of the hydrogen entering into a given weight 
of water is represented as 1, according to Prout the weight of oxygen 
then combined with the hydrogen should be represented by the natural 
number 8. Or, if the weight of oxygen is 100, the corresponding 
weight of the hydrogen will be represented by 12.5.  
    However, a series of 19 experiments made by Dumas, after 
introducing all the corrections, resulted in [Cournot provided a table of 
the results of those experiments ranging from 12.472 to 12.562 
indicating in each case the applied dehydrating acid, sulphuric or 
phosphoric]. The mean is 12.515, the sum of the squares of the 
deviations is 0.0173, the weight of the [final] result, 102.145. When 
substituting that weight instead of γ√m in the equation  
 
    t = lγ√m 
 
and assuming that l = 0.015, we get t = 1.532 and the corresponding 
value of P will be 0.969. Thus, admitting that it is possible to apply 
here an approximate formula (see below), and supposing that the 
numbers provided above are free from the influence of all causes of 
constant error, 32 can be bet against 1 on the error of the mean 12.515 
to be smaller than 0.015 in either direction. Reciprocally, admitting, 
according to a prior viewpoint, and for satisfying the Prout law the 
value 12.500, 32 can be bet against 1 that the Dumas numbers, 
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however carefully that able chemist had carried out his research, are 
still affected by a constant error tending to increase his values.  
    In the Table above, 9 experiments out of 19 provided numbers 
smaller than 12.500 with their mean being 12.486, which is almost 
12.480 as resulted from previous experiments by Berzelius and Dulong. 
Until the last experiments of Dumas, they were adopted by all those 
who did not share the theoretical ideas of Prout as well as by the 
school of British chemists. In other words, the law of probabilities of 
errors that apparently results from that Table, tends to group the errors 
in the vicinity of the extreme values which is contrary to our idea 
about that law in the strict sense and which does not originate from the 
limit imposed by the nature of things on the possible precision. We 
simply conclude that it is impossible to vouch for the fourth digit in 
that analysis or rather in the synthesis of water by the actual method of 
experimenting17. The mean of 10 experiments with sulphuric acid as 
the dehydrating substance was 12.520, and the mean of the 9 other 
experiments in which phosphoric acid was applied, was 12.511. By the 
formulas of § 128 we are authorized to regard the difference as purely 
fortuitous rather then indicating any variation in the system of constant 
causes in those series. 

Notes 
    1. The ordinates fx of a bell-shaped curve of probabilities can be represented by a 
function such as Kexp(− k2x2), cf. formula (33.2). The coefficient K measures the 
maximal ordinate. […] If the function fx is really of that form, the probability P 
corresponding to limit l of the deviations can be calculated by formula (69.1) without 
having a large number of observations m. That formula becomes exact rather than 
approximate for any values of m. This case necessarily occurs when each of the 
particular values applied for calculating the definitive mean is by itself a mean of a 
large number of measures taken under similar circumstances. A. A. C. 
    2. That rule is due to Laplace, 1811, see his Théorie (1812/1886, pp. 345 – 348) 
and is included in Poisson (1837, § 108). The mean is taken as the value of g rather 
than of a as stated by Cournot. [B. B.] I am not convinced. O. S. 
    3. By the principles of the differential calculus the coefficients C1, C2, … are the 
numerical values of the differential coefficients 
 
    df(a, b, c, …)/da, df(a, b, c, …)/db, … 
 
with a = α, b = β, … 
    We can also determine these coefficients approximately and empirically of sorts, 
without knowing the rules of the differential calculus. To this end, we take a = α, b = 
β, … in formula (133.1) and calculate η. Then, without changing the values of b, c, 
… we assume that a = α + δ1 where δ1 is an arbitrary and very small fraction of α, for 
example a hundred or a thousand times smaller. We thus get η1 very little differing 
from η, and (η1 − η) will be very near to C1δ1 in equation (133.2). Therefore, the 
value of the quotient (η1 − η)/δ1 will be very near to C1. In the same way we 
successively determine C2, C3, … A. A. C. 
    4. Cotes published his proposal in 1722, see Gowing (1983). Without any 
justification he advised to regard the weighted arithmetic mean, which he compared 
with the centre of gravity of the system of given points, as the most probable 
estimator of the constant sought. Cournot’s description follows Laplace (1814/1995, 
p. 121).  
    5. Laplace first provided that formula in 1811, see his Théorie (1812/1886, p. 325). 
[B. B.] 
    6. See Laplace (1812/1886, p. 327). [B. B.] 
    7. Legendre was the first to propose the rule of least squares, but only as an 
empirical procedure for introducing more symmetry into the calculations. Then 
Gauss proved that that rule ought to be considered as the most advantageous in 
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virtue of the principles of the theory of chances if the law of probabilities of the 
errors is Kexp(− k2x2), see Note 1. 
        Finally Laplace demonstrated the same for any law of probabilities under the 
conditions: 1. The law of probabilities is the same for all the observations and the 
same for positive and negative errors. 2. The number of observations reaches the 
order of magnitude allowing the application of approximate formulas. But we ought 
to admit that, having a very large number of observations, this rule becomes barely 
practicable because of long calculations. This circumstance essentially restricts the 
practical value of Laplace’s theory. In this case the benefit of the rule depends 
mainly on the fact that the form of the function expressing the law of probabilities 
for observations of astronomical precision should little deviate from the law initially 
assigned by Gauss8. A. A. C. 
    8. Cournot did not know about Gauss’s decisive contribution (1823), had not 
properly described Laplace’s stillborn theory of errors and had not noticed that the 
treatment of a large number of observations is difficult in any case. Bru noted that 
Cournot had ignored Gauss in his other contributions and that in the first half of the 
19th century Laplace’s work had been considered as the last word of the pertinent 
sciences.  
    Cournot apparently thought that the number of observations was usually very large 
(§ 130) and that errors can be (always) judged by their relative values (§ 130). He did 
not explain how to compare the precision of measured distances and angles (§ 140), 
did not mention errors caused by external conditions of observation and his 
discussion of the errors of reading (§ 139) is wishful thinking. He discussed the 
measurement of the height of a tower but did not refer to Cotes (Gowing 1983), and 
he could have mentioned Bessel (1839) who had found out the most suitable points 
for supporting a measuring bar so that its weight will least corrupt its length. My 
criticism concerns geodesy, the main pertinent field both at that time and for many 
later decades. Also see Note 3 in Chapter 6.  
    9. Until now, the theory discussed in this chapter has been only applied in 
astronomy. When admitting the Prout theory (see below) in full, would not it be 
proper to apply it for determining the atomic weights or chemical equivalents by 
subjecting to simultaneous calculations the corrections, to which those weights are 
liable according to a large number of analyses of various substances. The effects of 
different causes of errors will probably be compensated since the weight of the same 
chemical radical is determined by analysing many compounds in which it is included 
in various combinations. On the other hand, certain causes of errors can act 
constantly in the same sense when the analysis of the same compound is repeated. A. 
A. C.  
    10. See Poisson (1837, § 113). 
    11. Encke calculated the path of that comet discovered in 1818 by Pons. The Airy 
memoir mentioned a few lines below was published in the Mem. Roy. Astron. Soc. 
for 1837. [B. B.]  
    12. Cournot possibly had in mind that in 1799, the standard metre was fixed as 
being 443.295936 lines. [B. B.] The line was approximately equal to 1/12 of the inch. 
O. S. 
    13. Bru refers to Saigey’s paper of 1842 and provides information about that 
scholar. He many times mentions Saigey (1832) as the source of the measurements 
discussed by Cournot in the sequel. 
    14. Cournot could have referred to the personal equation discovered in 
astronomical observations by Bessel in 1823.  
    15. The research of the estimation of precision of measurement is a subject with 
which my friend and comrade at the Ecole Normale Saigey is particularly occupied. I 
have borrowed from him the most essential in the preceding remarks and the two 
first examples in § 144. A. A. C. 
    16. Bru indicates that various authors had applied different spelling of that 
mountain. 
    17. The Enc. of Chemical Technology, vol. 21, 1970, stated that that constant was 
12.59. [B. B.]  
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Chapter 12. Application to Problems in Natural Philosophy
1 

    145. For a long time the calculus of chances had only been applied 
to games of chance and therefore to purely speculative problems of no 
practical interest2, and to facts in social statistics whose causes escape 
any mathematical investigation because of their complication so that 
about them we only have the materials of experience. Little was done 
to adapt that calculus to problems of natural philosophy, of, so to say, 
a mixed nature. It was possible to hope that in that field observational 
data can be confronted with relations provided by the theory. If there is 
a branch of natural philosophy to which that kind of research [?] can 
be applied with hope for success, it is surely astronomy.  
    That science, distinguished among all the others because of its 
simplicity and grandeur of its studied phenomena, should therefore 
offer the most remarkable examples of rapid separation of regular 
causes counter to anomalies of chance. The immensity of distances 
separating celestial bodies and the relative smallness of their 
dimensions maintain the simplicity of their motion, introduce 
admirable geometric regularity and render those bodies more 
independent from each other, freer to arrange themselves according to 
the mathematical laws of combinations and causes influencing the 
initial conditions of their motion. In a word, just as the observational 
astronomy is a model of sciences of observation, theoretical astronomy 
is the model of scientific theories, and statistics of the heavenly bodies 
(if this association of words is possible3) will someday serve as a 
model for other statistics. 
    The example of a randomly thrown globe with a regular or irregular 
structure (§§ 71 and 81) is actually only a method of representing by a 
visual image a problem that should be frequently reproduced in 
astronomy. It consists of discovering whether a number of points was 
distributed over a sphere under the influence of regular or irregular 
causes. These points can be real as when discussing the distribution of 
the fixed stars of various magnitudes, of double stars4, nebulae etc. 
They can also exist only geometrically when we study the intersection 
of the celestial sphere with a number of straight lines or radii vectors 
originating in a common point, the centre of the sphere, or the poles of 
a number of planes passing through that centre, i. e., the points in 
which the perpendiculars erected from the centres of these planes cut 
the spherical surface. It is evident that to each direction of the plane 
corresponds a particular polar point and that if the planes are 
uniformly distributed in all directions the polar points will be 
uniformly placed on the spherical surface.  
    The three angular magnitudes used in astronomy for determining the 
planetary and cometary orbits are the inclination of the orbital plane to 
the plane of the ecliptic, the longitudes of the ascending node and of 
the perihelion5. The first magnitude is simply the angular distance of 
the pole of the pertinent orbit to the pole of the ecliptic; the second 
magnitude differs exactly by 90° from the longitude of the orbital pole. 
If the sense of the motion of a heavenly body is not taken into account, 
the orbital pole can be taken as one of the two opposite points in which 
the perpendicular to the orbital plane cuts the sphere. In the contrary 
case one of those points should be fixed by a convention similar to 



 131 

those which geometers apply in mechanics and which provide clarity 
to the exposition of theorems.  
    Thus, we can agree to choose the pole at the north of the ecliptic if 
the heavenly body has direct motion, a motion from west to east, and 
at the south of the ecliptic when the body has retrograde motion. 
    146. The solar system, such as we know it, consists of 11 primary 
planets. Here are their three elements defined above. [Cournot 
provides a table6 for the main planets up to and including Uranus and 
four minor planets.] These values which slowly change in time are 
shown for 1 Jan. 1801 and 1 Jan 1820 for the main and the minor 
planets respectively. All planets have direct motion and except Pallas, 
which appears to form a separate group with the three other minor 
planets, have very small inclinations of their orbits to the plane of the 
ecliptic. Theory proves that these inclinations, varying in time due to 
the mutual attraction of the planets, are invariably very small.  
    However, the theory does not tell us either why all the planets have 
direct motion or why the mutual inclinations of their orbital planes 
were initially very small. These are very remarkable features of the 
constitution of the solar system, and it is natural to require of the 
calculus of chances whether they can be attributed to fortuitous causes 
or causes which acted quite independently on each planet separately.  
    147. Let us first examine the circumstance of all the planets having 
direct motion. Denote by p the chance of such a motion for each planet. 
The posterior probability that p > 1/2 is, by calculations based on the 
Bayes rule (§§ 88 and 92), (212 − 1)/212 = 4095/4096. In other words, 
4095 can be bet against 1 on some cause favouring the appearance of 
direct motions more than that of retrograde motion. When only 
attributing to chance p two possible values, 1 and 1/2, that is, when 
only admitting two hypotheses, that the motion will necessarily be 
direct, or that the directions of motion are indifferent, the relative 
probability of the first hypothesis will be, once more according to that 
rule, 211/(211 + 1) = 2048/2049. 
    However, to understand how fragile is the basis of these calculations 
suffice it to have a look at the table above. We see that for all the 
planets except the Earth the longitude of the ascendant node is 
contained between 0 and 180° so that the Bayes rule provides the 
probability (211 − 1)/211 = 2047/2048; 2047 can be bet against 1 on the 
causes being not independent since the planets favoured the 
concentration of their ascending nodes in that half of the ecliptic where 
the longitudes were less than 180°. 
    At the same time, that concentration is quite certainly an effect of 
chance. A very small displacement of the orbital planes of the order 
caused by planetary perturbations is sufficient for that fortuitous 
accumulation to disappear someday. Even an accumulation of a much 
more considerable number of planets than actually observed and an 
enormously high probability then following from the Bayes rule would 
have provided no meaningful consequence as is clearly shown by the 
construction served for representing the geometrical conditions of our 
problem.  
    Suppose indeed that after 11 random throws of a globe we 
determined 11 points of its contact with the floor accumulated in a 
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certain region of the globe only a few degrees distanced from each 
other7. We will conclude with a very high probability that that 
accumulation was not random, but, on the contrary, followed from the 
structure of the sphere or manner of the throws. However, when 
constructing at random an arc of a great circle passing through one of 
those points, there will be nothing singular in that all the other 10 
points are situated on the same side of that arc, nothing that can not be 
easily explained by a freak of chance. Indeed, for that to happen it is 
sufficient that, 1) the chosen point was the vertex of an angle a of a 
spherical convex polygon with the other 11 points situated within it or 
on its sides; 2) the arc of the great circle randomly passing through a 
did not intersect that polygon.  
    In our astronomical problem, the point a represents the pole of the 
ecliptic, i. e., of the orbit of the Earth; the other points are the poles of 
the orbits of those other planets; the arc of the great circle passes 
through the pole a in a plane perpendicular to the ecliptic and the 
equinoctial line. There is nothing extraordinary about the Earth being 
one of the planets whose orbital poles are the vertices. And it is not 
more singular that the equinoctial line is situated in a manner that leads 
the arc of the great circle to be beyond the vertex of the angle a. Even 
were there much more planets and the orbital poles and the equinoctial 
line had not been displaced in time, the considered fact reduced to its 
veritable sense by the discussion above does not at all justify an 
intervention of a special cause, and all the calculations of probabilities 
on which its existence is founded are illusory. 
    On the contrary, we recognize that the existence of 5 or 6 planets 
with their orbital poles accumulated within a very small spherical 
polygon would not have reasonably been attributed to chance. 
    Supposing that the chances of direct and retrograde motions are the 
same, and the chances of the longitude of the ascending node either 
larger or smaller than 180° are also the same, there will doubtless be 
the same prior probability both for having direct motion 11 times in 
succession and for that longitude to be smaller than 180°. However, it 
will not follow that these two occurred opposing events lead to the 
same posterior probability of their having unequal chances. At least 
that posterior probability only has a subjective value for someone who 
had to consider these two events on a par because of his complete 
ignorance of the other features distinguishing them. Such a probability 
can not lead to any objectively significant consequence. 
    148. The sum of the inclinations of the planetary orbits with respect 
to the ecliptic or the sum of the distances of the pole of the ecliptic to 
the poles of the other orbits is equal to 82°14′19″.1. If all the values of 
the polar distances contained between 0 and 180° are equally 
probable8, the probability that that sum is less than 90° will be (Note 5 
in Chapter 6) an extraordinarily small fraction 1/21010! = 
1/3,715,891,200. However, if the purely fortuitous causes determine 
the directions of the orbital planes, the probability that the value of 
each polar distance will increase proportionally to the sine of that 
value and the values near to 0 or 180° will be much less probable than 
those near 90°. Therefore, the probability that the sum is less that 90° 
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or the mean less than 9° will be considerably lower than the preceding 
fraction. Its exact determination would have been tiresome and useless.  
    Calculation according to our inexact hypothesis, much less 
favourable for an equal probability of all the values, will suffice for 
proving that the accumulation of the orbital poles around the poles of 
the ecliptic can not be regarded as random. Instead of relating the 
orbital planes of other planets to the plane of the ecliptic, it is natural 
to relate the latter, just as the other planetary orbits, to the plane of the 
solar equator. Then, after considering that all the motions of the 
rotation of the Sun and the planets and of the translations and rotations 
of the satellites are direct9, and in most cases occur in planes little 
inclined to the solar equator, we will not doubt that an initial cause 
tended to bring together the orbital planes and the plane of the solar 
equator and to imprint on all those bodies translations and rotations 
directed in the same sense as the rotation of the great mass dominating 
the system.  
    149. It is natural to inquire whether the same or a similar cause 
acted on the comets10, or, on the contrary, whether these bodies differ 
from the planets in everything. Their volumes are enormous and 
masses imperceptible, they move along hyperbolas or excessively 
eccentric ellipses, some in the direct, and some in the retrograde sense. 
In addition, their orbital planes are indifferently directed to all regions 
of the space. When calculating the mean of the inclinations of the 
cometary orbits to the ecliptic, we find that its value is11 ca. 50° thus 
exceeding 45°. And Laplace, owing to a very singular oversight, 
concluded that the comets, far from following the tendency of the 
bodies of the planetary system to move in planes little inclined to the 
ecliptic, seem to have a contrary tendency12. 
    For purely empirically becoming convinced in the defect of that 
conclusion, suffice it to calculate the inclinations of the cometary 
orbits with respect to one or two planes perpendicular to the ecliptic. It 
will occur that the [their] means exceed 60° and it becomes sensible 
that the orbital planes are not uniformly distributed in all regions of the 
space and that they seem, on the contrary, to indicate a marked 
tendency to approach the plane of the ecliptic. This becomes 
theoretically evident also by considering the orbital poles. Had the 
orbital planes been indifferently directed to all the regions of the space, 
the poles would have been uniformly distributed over the regions of 
the celestial sphere and then the mean distance of these poles to the 
pole of the ecliptic or the mean inclination of the planes to the ecliptic 
would converge to 57°17′44″.8 (§ 71), i. e., to a value much exceeding 
50°.  
    150. For establishing the laws to which the distribution of the 
cometary orbits in space can be subjected and for applying the calculus 
of chances for determining the particulars presented by that 
distribution, the system of coordinates used by astronomers (§ 145) is 
of little use. On the one hand, we have remarked (§ 71) that the mean 
of a number of longitudes converges less rapidly to a fixed number and 
again less rapidly than the mean of a number of latitudes or of the 
corresponding polar distances gets rid of the anomalies of chance. On 
the other hand, we know that the best method for discovering the laws 
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governing the combinations consists in combining the symmetrical 
elements whereas the system of longitudes and latitudes or longitudes 
and polar distances do not satisfy that condition of symmetry. 
Therefore, we13 have applied the distances of the orbital poles from 
three points symmetrically situated on the heliocentric celestial sphere: 
the north pole of the ecliptic, the vernal equinox or the first point of 
Aries, and the summer solstice or the first point of Cancer. These 
distances, which we denote respectively by θ, θ′ and θ″, measure the 
angles that a straight line perpendicular to the orbital plane makes up 
with these mutually perpendicular straight lines drawn from the centre 
of the sphere to the three indicated fixed points. They also measure the 
inclinations of the orbital plane to the ecliptic and to the two other 
mutually perpendicular planes, both of them perpendicular to the 
ecliptic. 
    Since the sense of the cometary motion is not taken into account, it 
is possible to choose as the orbital pole any of the two points in which 
the straight line perpendicular to the orbital plane cuts the sphere, and 
assume that θ, θ′ and θ″ take values from 0 to 90° without attaching 
signs to them. In the contrary case (§ 145) the pole should be attributed 
either to the north, or to the south hemisphere depending on whether 
the comet has direct or retrograde motion. However, we will still 
assume that θ, θ′ and θ″ take values from 0 to 90°, but distinguish them 
by their signs and regard as positive the angles between the straight 
lines drawn from the centre of the sphere to the orbital poles and the 
radii vectors of the north pole of the ecliptic and the first point of Aries 
and Cancer, and as negative the angles between those straight lines 
and the extensions of the same radii vectors to the opposite regions of 
the celestial sphere. Finally, we denote by t, t′, and t″ the analogues of 
θ, θ′ and θ″ for the perihelia instead of the orbital poles and apply to 
them the same system of notation14. 
    We base our calculations on the catalogue of comets published in 
1823 by Olbers15 in the Astronomische Abhandlungen with a 
supplement extending to 1825 and followed up by the catalogue of 
Santini (1830) extended to comet No. 137. Two more comets observed 
in 1830 and 1832 were added, so now 139 orbits are known. On the 
other hand, we thought it necessary to exclude as very uncertain the 
Chinese, Arabic and European observations made before the 16th 
century and only take into account 125 orbits. The dates of their first 
observed appearance together with the elements attributed by 
calculation to that date were only preserved in the catalogue for 
comets with a constant period of returning. These are the comets of 
Halley of 1607, of Encke of 1786 and Biela of 1772. This manner of 
applying the elements of the periodic comets seems to be most free 
from arbitrariness.  
    151. Suppose that by means of the catalogue mentioned above we 
calculated and arranged in a table in the chronological order of the 
appearance of the comets the pertinent angles θ, θ′ and θ″ and t, t′, and 
t″ and that we calculated the [their] means for 10, 20, … of the first 
comets until exhausting all 125 without taking into account the signs 
of each angular value. We will have the following table. [Cournot 
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provided a table of those 6 magnitudes for 10, 20, …, 110, 120, 125 
orbits.] 
    When inspecting this table we are first of all surprised at the small 
intervals within which oscillate those consecutive means after the 30 
first ones. From the beginning of the 18th century when there were 
only 30 comets with somewhat known elements, those values have 
remained almost the same up to our epoch. According to this table, it 
is impossible to deny the existence of constant causes, real or 
apparently real, having to do with the conditions of that phenomenon 
or of observations, which maintain the mean of θ smaller than the 
means of θ′ and θ″, and those of t″ smaller than the means of t and t′.  
    If no constant cause would have opposed the uniform distribution of 
the orbital planes and of their major axes, the absolute mean [?] will be 
57°14′44″.8 and the modulus [?] becomes 2.9518 if a quarter of a 
circumference is chosen as unity (§ 71). We will then have in advance 
the probabilities 0.99991, 0.938, 0.982, 0.939, 0.892 and 0.9986 that 
the means of the 125 trials of θ, θ′ and θ″ and t, t′, and t″ will not 
randomly deviate from the absolute means in either direction as much 
as they did in the last line of the Table. Therefore, and as always 
bearing in mind the explications repeatedly provided here of the 
essence of posterior probabilities, we can bet 9,999 against 1 on the 
probability that until today, judging by the mean value of angle θ, the 
constant causes acting on separate observations tended to bring 
together the plane of the ecliptic and the planes of the observed 
cometary orbits. Just the same, when taking into account the mean 
value of angles t″, we can bet 715 against 1 on the probability that 
constant causes tended to bring together the major axes and the 
solsticial line. 
    152. At present, it should be remarked that the laws of probabilities 
of the angles θ, θ′, … are not independent from each other. Indeed, on 
the one hand the sum of the numerical values of the angles θ, θ′ and θ″ 
ought to remain within the limits 180° and 164°13′ (thrice the angle 
whose tangent is √2) and it is the same for the sum of the angles t, t′, 
and t″. On the other hand, the system of the angles θ, θ′ and θ″ acts on 
the system of angles t, t′, and t″ and vice versa. Denote for the sake of 
brevity by Θ the point of the celestial sphere corresponding to the 
system of the angles θ and by T the point corresponding to the system 
of the angles t. If point Θ is given, the point T should be situated on 
the great circle of the sphere with pole Θ; and when T is given, the 
orbital plane can only rotate about the diameter passing through T so 
that the point Θ should also be situated on the great circle of the sphere 
with point T as its pole. 
    Deliberating about the essence of this mutual dependence, we are 
bound to think that it can be most suitably revealed16 by decomposing 
the series of the values of each angle into two partial series formed 
respectively by the values exceeding and smaller than 60°. According 
to the hypothesis of a uniform distribution these two series should 
consist of the same number of angles. We see however, on the contrary, 
that after that decomposition the results can be expressed by the 
following notation convenient by its brevity.  
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    θ, 48:77; θ′, 65:60; θ″, 69:56 and t, 77:48; t′, 66:59; t″, 44:81 
 
    It means that, for example, the series of angles θ contains 48 
exceeding 60° and 77 smaller than that value. Now we clearly see the 
influence that the manner of distribution of the values of θ exerts on 
the distribution of the values of t and we find a similar dependence in 
comparing θ′ with t′, and θ″ with t″. The drawing together of the 
numbers in the last case is less surprising and we will soon reveal the 
cause of this particular circumstance17. 
    153. After establishing the existence of constant causes which 
influence the chronological series of observations of the cometary 
orbits we should wish to go further and study by certain 
decompositions of the series the nature of the influencing causes and 
whether their influence is the same for various angular regions and 
different senses of motion. 
    To this end we can at first decompose the series in two others. One 
of them is formed by all comets whose passage of their perihelion was 
observed in the half-yearly winter period from 22 September to 22 
March, and the other, from 22 March to 22 September. That first 
separation is only relative to the situation of the observer, and should 
be regarded as accomplished by chance and therefore having no 
influence on the laws of probabilities of the elements, at least if these 
laws are not themselves subordinated to causes only depending on the 
circumstances of observation. 
    154. Out of 125 comets of our list, 71 belong to the winter series 
and 54, to the summer series. That inequality could have been 
expected. Thus, Arago remarked that during the summer months the 
long day properly understood and the twilight can not fail to conceal 
from us a certain number of those acts18. Suppose that the existence of 
this cause had not been manifested in advance; then, after deriving the 
probability of the ratio 71/54 by the ordinary formulas, we will obtain 
0.924, a number of an order which is not usually thought as decisive in 
natural philosophy. 
    However, that probability can be much heightened (§ 116) when 
studying the ratio of the numbers in both series of 10, 20, … orbits 
taken in chronological order of appearance and beginning from the 
first 10 ones. This is indicated in the following table. [Cournot 
provides a table showing both the total number of cometary orbits and 
their number observed in winter and summer: 40 (24 and 16), 50, … 
110, 120 and 125 (71 and 54).]  
    155. When taking into account the signs of the angles (§ 150), the 
distribution of the orbits will be [Cournot provides a table showing the 
distribution of the 125 orbits among positive and negative values of 
the set of the six angles θ, θ′, θ″ and t, t′, t″ separately for winter and 
summer.] 
    The most apparent result is that in winter the number of positive 
values of t″ exceeds the number of its negative values whereas the 
opposite takes place in summer. This phenomenon is certainly due to 
the optical circumstances of observation. Actually, in winter the radius 
vector passing from the Sun to the Earth forms an acute angle with the 
line, again issuing from the Sun, to the first point of Cancer; in 
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summer, however, that angle becomes obtuse. And when considering a 
plane perpendicular to the ecliptic and the solstician line and passing 
through the centre of the Sun, it becomes clear that a terrestrial 
observer has more chances to discover comets at their perihelia 
situated on the same side of that plane as the Earth than those being on 
the other side of that plane, in the hemisphere opposed to the 
heliocentric celestial sphere19.  
    156. Bearing in mind these preliminary remarks, after constructing a 
table of series for each half-yearly period similar to those of § 151 for 
the general series, we obtain [Cournot provides a table showing the 
values of θ, θ′, θ″ and t, t′, t″ for 10, 20, …, 50, 60, 71 orbits and the 
winter period, and for 10, 20, …, 40, 50, 54 orbits and the summer 
period.] 
    The same remarks concerning the small extent of the oscillations of 
the means and of their rapid convergence as in § 151 are possible. 
Angles θ and θ″ are apparently the only ones for which we can 
conclude from the final means of the Table that their chances in those 
periods are unequal. According to the usual formulas whose sense we 
have explained, the probabilities of these inequalities are 0.927 for θ 
and 0.946 for θ″.  
    A very simple consideration suggests the idea that there exists an 
optical cause which should modify the means of the two series of 
angles θ. Actually, the effect of the solar light which conceals from the 
European observer more comets in summer than  in winter is caused 
by the plane itself of the ecliptic. Consequently, mostly affected are 
the comets less deviating from the ecliptic or moving along orbits little 
inclined to that plane. The natural means for checking that conclusion 
consists in comparing the number of the orbits in both series whose 
inclinations are contained within certain limits. In addition, important 
consequences that can be connected with this result compel us to 
consider it doubtless when comparing the orbits, beginning after the 
first 30 of them, as indicated in the following table. [Cournot provides 
a table showing the number (30, 40, …, 110, 120, 125) of orbits 
having inclinations 0 – 40, 40 – 60, and 60 – 90°, separately for winter 
and summer.] 
    The table makes it evident that the difference in the action of the 
considered optical cause in winter and summer almost exclusively tells 
on the comets whose orbits are inclined from 0 to 40° to the ecliptic 
and ceases to be noticed when inclinations exceed 60°. We should 
conclude that, without the influence of the solar light which acts in the 
same sense both in winter and summer, although less intensively in 
winter, the accumulation of the cometary orbits in the zodiacal regions 
would have been much more appreciable for observing. Actually, it 
seems impossible to assign mean inclinations obtained after 
completely eliminating that optical influence. We can not even assert 
that there is no other optical cause producing the accumulation in the 
zodiacal regions. However, at least the opinion that that accumulation 
is real and due to some cosmological cause becomes very highly 
probable. 
    157. The optical influence is principally manifested by the 
inequality of its action in winter and summer and modifies the 
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distribution of the angles θ apparently without appreciably acting on 
the angles t. It should therefore corrupt the relations which would have 
been naturally established between the two laws of distribution, and 
these relations are more exactly seen in the winter rather than in the 
summer or in the total series. Actually, when continuing to apply the 
notation of § 152, we find for the winter series this remarkable result: 
 
    θ, 24:47; θ′, 36:35; θ″, 46:25 and t, 46:25; t′, 36:35, t″, 27:44.  
 
    It can be shown in quite a symmetrical form: 
 
    θ, m:n; θ′, p:p; θ″, n:m and t, n:m; t′, p:p, t″, m:n.          (157.1) 
 
Here, p = (m + n)/2. However, the surprise possibly caused by the 
extreme simplicity of this statistical law derived from such a small 
number of elements, will be still strengthened when decomposing the 
winter series in two others depending on whether the angles θ are 
positive or negative. When compiling as many such parts as there are 
angular elements and when finally compiling a last partition depending 
on perihelion distances being smaller or larger than 3/4 of the 
semimajor axis of the terrestrial orbit, we will obtain the following 
result. [Cournot provides a table showing the number of orbits for each 
of the six angular magnitudes taken separately with either sign and 
broken down into those exceeding 60° and smaller than that.] 
    All these results so well agree with formula (157.1), the deviations 
are so small in spite of the small number of considered orbits and of 
the combinations taking place when having seven different partitions 
of the same series, that it is very difficult to attribute that coincidence 
to chance20. 
    158. The particular position of a European observer provides 
occasion for studying the possible differences between two series 
consisting of comets with a north (+ t) and south (− t) perihelia. Indeed, 
in Europe, the retained elevation of the north pole of the ecliptic above 
the horizon can not fail to conceal from us a certain number of comets 
which, while near their perihelia, do not leave the southernmost 
regions of the heliocentric sphere.  
    These considerations perfectly agree with the experience as we can 
show by a table classifying the angles t in both series similar to what 
was done in § 156. For the sake of brevity we restrict our description 
by providing the final result. The first number refers to the series of 
comets with a north perihelion and the second, to the series of those 
with a south perihelion. 
 
    For t = 0 − 40, 40 − 60, 60 − 90 and 0 − 90° the respective series are 
    21:6, 10:11, 37: 40 and 68:57. 
 
    It is easily seen that the comets whose angle t is negative [?] and 
less than 40°, or, in other words, whose perihelia have a south 
heliocentric latitude larger than 50°, can only be seen in Europe under 
very rare circumstances. Only one such comet among the 60 (most of 
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them barely, or not at all visible by the naked eye) was observed after 
1780.  
    That circumstance could not have failed to influence the inclination 
to the ecliptic because of the relation between the angles θ and t. If we 
compare the means of the elements for north and south perihelia both 
in the total, and in each half-yearly series we will obtain the following 
results. [Cournot provides a table showing for each of those three 
series the mean values of each of the six angular magnitudes, 
separately for the two different kinds of perihelia.] The differences are 
of the same sense for series of the half-yearly periods except for the 
angle t whose deviations can very probably be attributed to anomalous 
causes21. 
    159. And so, the two optical influences which are evidently 
connected with the local situation of the European observer, act in 
contrary senses. The result of our discussions is that the influence 
tending to diminish the mean inclination is insufficient for explaining, 
at least nowadays, the difference observed between that mean and the 
absolute mean under the hypothesis of uniform distribution. However, 
the main problem remains unsolved and we are still justified in 
requiring whether the purely optical causes connected with the 
position of the terrestrial orbit in the celestial space do not occasion the 
observed difference. For Lambert, that point did not seem probable but 
he had not provided any arguments supporting his opinion which is 
however strongly corroborated by the remark in § 156.  
    On the one hand, it seems difficult to take into account, precisely 
and in advance, the chances of visibility; on the other hand, we should 
recognize that the number of observations (sufficient for establishing 
the apparent laws of distribution in the general series) is not enough 
for providing a definitive solution of this interesting problem22. 
    160. It has been remarked long ago that the numbers of comets with 
direct (+ θ) and retrograde (− θ) motions are appreciably equal 
whenever the series was terminated. Out of the 125 comets we have 65 
and 60 respectively. There is therefore room for believing that the 
chances of visibility are not less for the former than for the latter. On 
the other hand, we have 69 comets whose direction of motion renders 
the angle θ′ positive (§ 150) and 56 causing that angle to be negative. 
We are therefore authorized to suppose that the chances of visibility 
are greater for the comets of the series (+ θ′) than for those of (− θ′) or 
that at least these chances are the same.  
    However, suppose that the smallness of the mean inclination occurs 
because a certain number of comets among those whose orbits are 
more inclined to the ecliptic escape the conditions of visibility, then 
the mean θ will not be less for the comets with direct, than for those 
with retrograde motion, and it will be larger for the series (+θ′) than 
for those of (− θ′). But this is exactly contrary to the observed: the 
means of θ for series of (+ θ) and (+ θ′) are noticeably smaller than for 
the series (− θ) and (− θ′), and their deviations are sufficiently large 
and sufficiently stable for rendering probable the inequalities between 
the laws of distribution depending on whether we consider one of the 
partial series or a [partial] series with a contrary sign as can be judged 
by the following table.  
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    [Cournot provides a table showing the number of orbits 1) 30, 40, 
…, 60, 65 and 2) 30, 40, 50, 56, 60, 69 and the respective mean values 
of θ for series (+ θ) and (− θ) and (+ θ′) and (− θ′).] 
    Suppose that someday that result becomes doubtless23. It will then 
be natural to conclude that the inequality of the distributions between 
the series does not occur because of an optical influence so that real or 
cosmological causes modified the law of distribution depending on the 
sense of motion, and that that law for the general series is definitively 
affected by the influence of real causes to which the accumulation of 
the orbits in the zodiacal regions should be indeed attributed24.  
    161. If the general series is decomposed in two others, one of them 
consisting of comets with perihelia distances smaller than 0.75 (with 
the semimajor axis of the terrestrial orbit chosen as unity), and the 
other, with larger perihelia distances , these partial series will include 
an almost equal number of comets, 65 and 60. However, for 
recognizing that this result is only temporary, suffice it to remark that 
for the first 60 appearances until 1772 that ratio was 40:20 whereas for 
the 65 later appearances it was 25:40. A more thorough study of the 
sky by more powerful instruments evidently discovered a much larger 
number of comets among those which previously had escaped the 
conditions of visibility because of their large perihelion distances. 
When taking the means of the two partial series thus formed we obtain 
the following result. 
    [Cournot provides a table showing the six angular magnitudes for 
both series.] We should conclude, at least for the time being, and 
contrary to Lambert’s opinion, that the laws of distribution apparently 
do not essentially change with the perihelion distances25.  
    162. We have dealt in detail with the problems of the distribution of 
cometary orbits because it seems to have provided a remarkable type 
of analysis and a discussion of a statistical fact, and because it clearly 
shows (contrary to the received prejudice) that in this type of 
discussion it is not always necessary to have a very large number of 
observations. Large numbers are really needed for the stability of the 
means26 and only when the ties of solidarity between individual 
observations irregularly change from time to time and place to place. 
    We will only add a few words about the application of the calculus 
of chances to phenomena produced by various physical agents on the 
surface of our globe and on the fluids covering it. Take for example 
the variations of the atmospheric pressure indicated by the barometer27. 
Many accidental and irregular causes incessantly vary, especially in 
our climate, the barometric height, so that, when being content with 
measuring this height at certain hours of the day for a small number of 
weeks or even months, we can only arrive at discordant results and be 
absolutely unable to single out the laws of diurnal barometric 
variations, or the small but constant influence of the hour of the day on 
the barometric height.  
    Suppose, on the contrary, that we collect a large number of 
observations and take the means of the heights observed at two 
different hours of the day, for example, at 9 o’clock in the morning 
and at 3 o’clock in the afternoon. Suppose also that the days of 
afternoon observations are chosen fortuitously and independently from 
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the days of the morning observations. The difference of the 
observations will indicate the existence of constant causes by whose 
virtue the atmospheric pressure depends on the hour of the day. The 
anomalies due to the intervention of causes more energetic but 
irregular and independent from the hour of observation will disappear. 
Depending on the magnitude of the difference and the number of 
values taken to form each mean, calculations will indicate the 
probability with which we can decide about the existence of constant 
causes to which that difference was due. 
    However, when proceeding in that manner, we often find it 
necessary to have a very large number of observations for arriving at 
appreciably fixed means and to be able by formulas of the theory of 
chances to become assured with sufficient security of the existence of 
the sought constant causes. 
    Now suppose that instead of registering the absolute values of the 
barometric heights as described above we note the excess of the 
morning heights for each day. The evening height is not in general 
independent from the height in the morning since the action of 
anomalous causes which heighten or lower the morning barometric 
column usually does not cease at 3 o’clock in the afternoon. It thus 
becomes evident that the difference of the two consecutive heights is 
largely free from the influence of causes irregularly affecting each 
absolute height. Consequently, the mean difference between 
consecutive heights more rapidly and more surely indicates the laws of 
diurnal variation or the influence of the hour on the barometric height.  
    Such procedures have actually established the laws of the diurnal 
variations of the atmospheric pressure in different seasons and 
climates. And, had it been required, we would have investigated in the 
same way the diurnal variations of the magnetic declination or of any 
other similar phenomenon. The same principle which we apply to 
consecutive observations at a given place is usable for treating 
simultaneous observations made in different places sufficiently near to 
each other for being influenced by the same perturbative causes. Thus, 
thermal inequalities in two neighbouring places are more rapidly and 
more surely established by taking the means of the differences of 
temperatures observed at the same time in both those places rather 
than when determining them by the means of independent 
observations of the temperatures28.  
    163. The theory of the tides, so important in itself and because of its 
connection with great astronomical phenomena, offers an opportunity 
of one more excellent application of isolating the effects of regular 
causes from those due to perturbative forces29. When a sequence of 
observed heights of the sea is formed in a port, at first the results are 
usually very irregular and discordant because of the action of winds, 
tempests, currents and many accidental circumstances. They corrupt 
the regular action of the Moon and the Sun which tend periodically to 
rise and abate the waters of the Ocean.  
    However, when taking the excess of the height of the high tide over 
that at the preceding and following low tide, and comparing its mean 
values during syzigies and quadratures near the equinoxes and then 
near the solstices and, finally, comparing the series of observations 
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made when the Sun or the Moon are near their apogees and perigees, 
we will reveal the proper influence of each of those attracting celestial 
bodies depending on their distance and remoteness from the equatorial 
plane.  
   We thus obtain, as Laplace30 had shown, results sufficiently precise 
for determining the value of the mass of the Moon agreeing with what 
was established by other purely astronomical phenomena. Besides that, 
it was attempted to find out whether barometric observations also 
indicate the existence of periodic movements of the atmosphere caused 
by the lunar attractive force. Laplace compared the diurnal barometric 
variations observed in Paris for the days of syzigies and quadratures. 
He studied a series of 298 days of either and his calculations led to the 
lunar atmospheric flux equal to 0.0176 mm31. This magnitude is too 
small for definitively concluding that the lunar attractive force 
appreciably influences the atmospheric pressure, at least in our climate. 
    On the other hand, by issuing from a long sequence of noon 
observations at Viviers, Flaugergues concluded that the variation of 
the diurnal barometric heights amounted to 1.48 mm and seemed to be 
very regularly connected with the lunar phases and therefore, because 
of the chosen hour of observation, with the distances of the Moon from 
the meridian, see the following table32. [Cournot provides a table 
showing the number of observations (246 – 248) and the respective 
barometric heights during various lunar phases.] By interpolation we 
find that the minimal value of the barometric heights at Viviers 
(754.78 mm) occurred at 9h18min before the Moon passes the meridian, 
and the maximal value (756.26 mm) at 6h12min after that passage. 
 

Notes 
    1. Except for some details, this chapter repeats Cournot (1834). [B. B.] 
    2. Games of chance had been in the social order of the day. Leibniz (1704/1996, p. 
506) advocated the creation of a new type of logic and therefore recommended to 
study all kinds of games. In 1713 Nikolas Bernoulli invented the celebrated 
Petersburg game and thus started a extremely useful discussion and De Moivre 
(1718) described many games which compelled him to develop the theory of 
recurrent sequences and to introduce the definitions of fundamental notions 
(probability, independence). All this profited probability and mathematics in general.  
    3. Heavenly bodies are too different and their statistics was never developed, but 
Cournot failed to mention William Herschel’s statistical investigation of the starry 
heaven as well as the study of the proper motions of stars which began in 1837 (F. 
Argelander). 
    4. Michell (1767) was the first to inquire whether the existence of double stars can 
be explained by a random distribution of stars over the celestial sphere. Many later 
authors discussed this problem (Sheynin 1984a, § 5). 
    5. The longitude of the ascending node is the angle between two straight lines 
passing from the centre of the Sun to the vernal equinox and to that node. Recall that 
the astronomers understand the longitude of the perihelion as the longitude of the 
ascending node augmented by the angular distance from the perihelion to the node; 
that distance is measured in the orbital plane. A. A. C. 
    6. Cournot borrowed that Table from John Herschel (1834). [B. B.] 
    7. D’Alembert (1768) did not agree; his main criticism was however directed 
against Daniel Bernoulli (1734). [B. B.]  
    8. This is the hypothesis of Daniel Bernoulli (1734) maintained by Laplace and 
contested by Cournot (1834, p. 505) and here in § 149. [B. B.] Poisson (1837, § 110) 
also rejected it. O. S. 
    9. Several satellites are now known to have a retrograde motion (Blazko 1947, p. 
343). 
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    10. This is what Daniel Bernoulli did as well as Lambert and Laplace. [B. B.] 
    11. Previously Cournot (1834) wrote 45° and Poisson (1837, § 111) provided 
48°55′ for 138 comets. [B. B.] 
    12. See Laplace [1812/1886, p. 263]. Only respect for the memory of Laplace 
prevented Poisson to recognize the palpable error of that great geometer. Contrary to 
what Poisson (1837, § 111) apparently had in mind, the problem was not to find 
whether all the inclinations to the ecliptic were equally probable. No, as Laplace 
expressly indicated, it was to determine whether the orbital planes were indifferently 
directed to all regions of the space, or, on the contrary, have the tendency to 
approach the plane of the ecliptic. A. A. C. 
    Cournot (1834, p. 505) noted that Laplace made that mistake in his Mécanique 
Céleste and that Poisson (1837, § 111) criticized Cournot stating that he confused the 
assumption that all the points of the celestial sphere can with the same probability be 
the poles of the cometary orbits with the hypothesis of equal probability of all 
possible inclinations of the comets. Cournot’s answer is not convincing. On the 
inclinations of the comets see for example Richter (1963, pp. 12 – 16). [B. B.] 
    13. See my Additions to Herschel (1834). A. A. C. 
    14. Denote the longitude of the ascending node by λ; by l, the longitude of the 
perihelion in the sense indicated in Note 5; by w, the projection of the angle (l − λ) 
on the ecliptic. Then (λ + w) will be the angle between two circles of latitude, one of 
them passing through the perihelion of the comet, and the other, through the vernal 
equinox. We will then have  
 
    cosθ′ = sinθ sinλ,  cosθ″ = − sinθ cosλ,  
    tanw = cosθ tan(l − λ),  cost = sinθsin(l − λ), 
    cost′ = sint cos (λ + w),  cost″ = sintsin(λ + w). A. A. C. 
 
    15. Olbers regularly published his pertinent calculations but did not compile any 
catalogue. [B. B.]  
    16. This is a rudimentary test. Galton, in 1877, provided the first contingency table. 
[B. B.] 
    17. Cournot returned to that circumstance in § 157. [B. B.] 
    18. See Annuaire for 1832, 2nd edition, p. 357. Lambert (p. 209 of the French 
edition of 1801 of his Lettres) annotated by d’Utenhoven made the same remark 
even earlier. A. A. C. I have only found an Annuaire historique ou histoire politique 
et littéraire but this reference is only a conjecture. O. S. 
    19. Cournot (1834, p. 520) also stated that a confrontation of statistical data with 
the appropriate prior theory could be applied for appraising future statistical results. 
[B. B.] 
    20. Cournot (1834, pp. 524 – 525) also stated that the existence of such a simple 
law could be partly due to the relations similar to the discussed not necessarily being 
continuous. [B. B.] 
    21. Cournot (1834, pp. 526 – 527) also stated that with probability 0.948, as 
followed from the total series and augmented by both partial series providing results 
of the same sense, the law of distribution of the angles Θ is not the same for comets 
with north and south perihelia. [B. B.] 
    22. Cournot (1834, p. 527) also stated that in a hundred years the number  of the 
observed comets will double and his results will be seen as a good example of 
combining the calculus of chances with statistical analysis. In 1843, he apparently 
lost his confidence and optimism. [B. B.] 
    23. It is thought that a sample of a few hundred comets out of many millions is too 
small and too heterogeneous. However, almost all comets with a short period and 
small inclination have a direct motion (Richter 1963, p. 16). [B. B.]  
    24. Cournot (1834, p. 529) remarked that it was time to find out the nature of those 
causes. [B. B.] 
    25. Cf. Lambert’s Lettres [1761?], pp. 222 – 223 and 67 – 69. [B. B.] 
    26. Cournot (1834, p. 503) remarked that for obtaining stable means much more 
trials were needed if made under differing circumstances by different people and 
globes which is the reason why social statistics should be based on such a large 
number of observations. [B. B.] Cournot had unjustifiably restricted the need to have 
a large number of observations. O. S. 
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    27. See Laplace (1812/1886, pp. 355 – 358, 1814/1995, pp. 54 – 55) and his Oeuvr. 
Compl., t. 13, 1904, pp. 342 – 358, Stigler (1975) and the article Laplace in the Dict. 
Scient. Biogr. [B. B.]  
    28. Lamont (ca. 1839, p. 263) stated without proof that a year of simultaneous 
observations at different places was tantamount to 30 years of ordinary observations. 
Then, after 30 years of experience, he (1867, p. 245) declared that that difference 
method will enable meteorology to become a mathematical discipline. Also see 
Sheynin (1984b, pp. 71 – 72). 
    Chetverikov, the translator of Cournot into Russian, referred to many later authors 
beginning with Cave-Browne-Cave (1904) and added that the mentioned new 
practice became the embryo of the variate difference method. 
    29. This was the main goal of De Moivre (1718) as he stated in a Dedication of 
that book to Newton. That Dedication was reprinted in 1756 (p. 329). 
    30. See Méc. Cél, livre 4, and Oeuvr. Compl., t. 12, 1898, p. 480. [B. B.] 
    31. Cournot provided a reference, but see Note 32.  
    32. Bibliothèque universelle, Dec. 1827, p. 264, and Apr. 1829, p. 265. A. A. C. It 
was the astronomer H. Flaugergues (1755 – 1835) who observed in Viviers, Ardèche.  
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Chapter 13. Application to Problems about  

the Elements of Population and the Duration of Life 
    164. An analysis of the work of statisticians on the elements of 
population and on mortality of humankind can be the sole aim of a 
considerable treatise. However, the plan of our book mostly envisages 
formulation of principles and does not allow us to enter into details. 
We restrict our deliberations by indicating a summary of some results 
since the interest in these problems was one of the main causes of the 
progress of the pertinent theory1. 

13.1. Births of Both Sexes 
    165. In our ignorance of the physiological conditions determining 
the birth of one or the other sex, a most curious problem of zoology2 
would have been the establishment by observation the chances of a 
male and female birth for each species of animals. In advance, the 
probability of a strict equality of these chances is infinitely low 
because mathematical rigour never occurs in the complex phenomena 
of natural forces. On the other hand, the admirable harmony 
dominating the works of nature is quite sufficient for believing that we 
will discover the ratios between the habits3 of each species and the role 
which fell on them, and the values of the chances of the procreation of 
both sexes provided by observation. 
    Until now, that research had only been studied by very imperfect 
essays; with respect to domestic animals, it apparently is not really 
difficult. For other species it will be necessary to give up such research 
had it been absolutely necessary to treat a very large number of 
observations. However, owing to the less complicated causes 
dominating here the random phenomenon whose chances we are 
looking for, even with medium numbers interesting and sufficiently 
probable results can be likely achieved.  
    In the beginning of the 18th century4, when scientific curiosity led to 
the study of public registers of vital statistics, it was noticed that more 
boys had been born than girls. Nowadays, no other fact is statistically 
established firmer than that. According to the official register of the 
movement of population in France and published by the Annuaire of 
the Bureau of Longitudes5, the following table shows [Cournot 
provides a table showing the annual number of male and female births 
in France and the corresponding ratios for 1817 – 1840]. 
    The mean ratio 1.0631 results from more than 23 mln births; it 
differs almost by 0.009 from the maximal value in 1817 and by 0.0075 
from its minimal value in 1830. For determining whether that ratio 
varies in time appreciably and progressively, Charles Dupin [(1842) − 
B. B.] calculated it for five-year periods from 1801 to 1840 inclusive, 
both for France and England as shown in the table below. [Cournot 
provides a table showing these data for France and, only for 1801 – 
1830, England & Wales. The ratio for the latter had invariably been 
smaller (mean value 1.0442).] However, the table is corrupted by 
noticeable anomalies so that a progressive diminution of the ratio6 can 
not be considered as sufficiently established.  
    166. For finding out whether climate influences the studied ratio, the 
Editors7 of the Annuaire separately considered two groups of 
departments, 8 in the north and 15 in the south. [Cournot provides a 
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table showing that data totally from 1817 to 1839. The ratios were 
1.0635 and 1.0618 respectively.] That table leads to the conclusion 
that the chances of birth of either sex are appreciably free from 
variations due to the influence of latitude [Quetelet (1836, t. 1, p. 42) − 
B. B.]. The same follows, at least for the time being, from the 
discussion of the statistical documents of the principal European states. 
[Cournot provides a table8 showing the data for France, Belgium (for 
1915 – 1939!), Holland, Great Britain, Sweden, Russia, Portugal and 
several German states. Great Britain and Sweden had the smallest ratio 
(ca. 1.045) and Russia (too large for having a single ratio), the largest 
(1.089).] 
    Observations in Egypt [Laplace (1814/1995, p. 39) − B. B.] and the 
Cape of Good Hope seem, on the contrary, to indicate an appreciable 
variation directly or obliquely caused by the influence of the climate. 
According to what follows below, it can not at all be doubted that the 
climate influences the chances of the birth of both sexes only when it 
is sufficiently strong for profoundly modifying the morals and habits.  
    It is also probable in advance that for such different races as the 
white and the black, the chances ought to be subjected to appreciable 
variation [ought to be appreciably different] independent from any 
moral or climatic influences9. 
    Instead of grouping the departments according to their latitudes, Ch. 
Dupin got the fortunate idea [Quetelet (1836, t. 1, p. 78) − B. B.] to 
form two groups of 24 maritime and 62 interior departments10. Again 
discussing five-year periods, he constructed the following table. 
[Cournot provides a table showing the period 1801 – 1840. The mean 
ratios were 1.0574 and 1.0677 for the former and latter groups 
respectively.] In spite of some objections made by Demonferrand 
(1842), it seems that these results should be seriously considered 
owing to their concordance. 
    167. The influence of morals and social habits on the chances of 
birth of both sexes became doubtless11 after babies born in and out of 
wedlock as well as those born in towns and rural areas began to be 
distinguished. From 1817 to 1839 illegitimate births in France 
amounted to 814,524 boys and 781,238 girls, ratio 1.0426. A similar 
result follows from the discussion of statistical documents of the main 
European states.  
    The influence of living in towns12, and especially in cities, is not 
stronger contestable. The Belgian ratio 1.0654 (§ 166) rises to 1.0670 
for those living in villages and decreases to 1.0607 for the urban 
population. In Paris, the number of male and female births during 1817 
– 1840 inclusive was 340,817 and 329,142, ratio 1.0355. That ratio 
varies as shown in the table13 [Cournot provides a table showing the 
annual births of either sex during that period. The totals coincide with 
the numbers provided above, so that the table is compiled for Paris 
(which is not expressly stated). The corresponding ratios vary from 
1.0163 (in 1838) to 1.0572 (1829). Cournot remarks that the numbers 
of girls born in 1822 and 1823 are the same, but that this equality is 
not a mistake; it is confirmed by their being broken down in Fourier’s 
Recherches statistiques … The volume of that source is not provided.] 
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    The number of illegitimate births is proportionally much larger in 
Paris than for France in its entirety. This, however, is not at all the 
only cause of the difference between the means for Paris and the whole 
kingdom. The number of illegitimate babies born in Paris during the 
period under consideration was 117,605 boys and 114,031 girls, ratio 
1.0319. It becomes 1.0377 when only considering those born in 
wedlock. Therefore, the causes diminishing in Paris the excess of male 
births act upon all the babies and even more strongly on those latter 
and similar results are observed in the main European cities.  
     Finally, if believing some observers, all causes tending to weaken 
physical force [Quetelet (1836, t. 1, p. 49) − B. B.], tend also to 
decrease the preponderance of male births. On the contrary, according 
to Sadler and Hofacker [Quetelet (1836, t. 1, pp. 51 – 53) − B. B.] the 
cause of the excess of male births only consists in that usually the 
father is older than the mother. The chance of the birth of either sex 
does not depend on their absolute ages, but only on that difference. 
Regrettably, the numbers on which these statisticians had supported 
their conclusion were insufficient14 for solving such an important 
problem. 
    168. It should have been natural to inquire whether the parents’ 
preference for boys is the cause or one of the causes of the excess of 
male births. As a consequence of that preference, asks Prévost (1829) 
from Geneva, will not the parents prevent after male births the 
increase of their family? […] The parents have a son; when various 
causes hinder the increase of their family, they will be perhaps less 
worried if their main expectation was fulfilled which would not have 
happened had they no male infants [Quetelet (1836, t. 1, pp. 48 – 49) − 
B. B.].  
    Long before Prévost formulated that argument, Laplace had refuted 
it. Actually, it is the same as made by a gambler who claims to have 
changed the chances of the game and the mean result of a large 
number of trials by adopting a system of quitting the game after 
gaining once or in many sets (§ 62)15. However, the problem can be 
studied from another point of view, not noticed yet which leads to an 
explanation of one of the causes of the excess of male births.  
    Suppose that the parents believe that setting the life of a girl causes 
more serious demands than settling a boy. Then there will be families 
whose multiplication stops after the birth of one or many girls 
although this will not happen after the birth of the same number of 
boys.  
    It is however probable that the chances of a male conception vary 
from one couple to another and that they are higher for a couple which 
had given birth to one or many boys than for another couple which had 
the same number of girls. Then those marriages will have more 
chances to extend their fertility whose first children were boys so that 
the superiority of the chance of a male birth is thus augmented. 
    The same consequence can be reached by quite different 
considerations. Nowadays it is well known that the mortality at earliest 
ages is appreciably higher for boys than for girls [Quetelet (1836, t. 1, 
p. 156) − B. B.]. It is even less doubtless that the babyhood mortality 
suppresses one of the obstacles limiting the number of births. The 



 149 

mean fertility of marriages is therefore higher for those marriages 
which had given birth to boys; that is, for those for which the mean 
chance of procreating a boy is higher. 
    If these two conclusions are justified, the causes rendering the 
setting up of boys in the world more difficult or increasing the cost of 
educating them, as well as those that decrease the infant mortality tend 
to diminish the excess of male births. However, to all appearances that 
excess is maintained in virtue of purely physiological causes inherent 
in the constitution of mankind. Above all, it would be necessary to 
determine separately the chances of the sex of the firstborn and to see 
whether they appreciably differ from the general mean. Many 
statisticians16 actually thought that for those firstborn the excess of 
male births was apparently less, but that result was contested and we 
regard it as one of those which will be most interesting to resolve 
definitively. 
    169. Conjectures were also made about the causes of the decrease of 
the chance of illegitimate male birth [see Villermé (1832) − B. B.]. 
And, first of all, if this chance actually diminishes among the firstborn 
because of the mentioned causes, it should therefore decrease when 
passing from legitimate births to illegitimate in which the proportional 
number of the firstborn is certainly much larger. If the excess of the 
father’s age over the mother’s, the severity of morals and hard physical 
work (if it only maintains and develops the body’s vigour) are the 
causes of the preponderance of the male births, they should evidently 
tend to increase that excess in legitimate births.  
    In addition, the mortality of the newborns and the proportion of 
stillbirths are considerably higher for the male sex17 and it is certain 
that the ratio of male/female conceptions very appreciably exceeds the 
ratio of the respective births. And if during uterine life the foetus of the 
male sex is less viable or has less chances for resisting the causes of 
destruction; and if on the other hand (which can not regrettably be 
doubted) more numerous of these threaten the embryo of an 
illegitimate conception [C. Bernoulli (1838) − B. B.], the combined 
action of both these circumstances should tend to diminish the 
proportion of illegitimate male births. 
    It is also possible, as can be suspected, that false declarations or 
utterances conceal from the registers of vital statistics the veritable 
proportion of the sexes among those born out of wedlock. It is not 
unlikely that among the abandoned babies registered as illegitimate 
although born in wedlock boys are proportionally less numerous than 
in general. It is more difficult to admit, as some authors had proposed 
[C. Bernoulli (1838, pp. 62 – 63) − B. B.], that in countries with a 
proper [?] registration of vital statistics illegitimate births of a 
considerable number of babies, especially boys, is concealed. 
    170. The mean ratio of the male/female births for France in entirety 
for 1817 – 1840 inclusive (§ 165) was 1.0631 and the mean value of 
the probability of a male birth was 0.51529. The weights of this result 
(§ 107) is expressed by the number 
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    Suppose that the causes influencing in the same way all the births or 
a group of births are not undergoing irregular or progressive variations, 
so that large numbers only compensate the influence of causes varying 
irregularly from one birth to another. Then we can bet 45,000 against 1 
on the error due to anomalies of chance of that number 0.51529 not to 
exceed 0.00044 in either direction, pending that the initial documents 
were exact. 
    After excluding the last year of that period, the numbers of male and 
female births will be 11,473,437 and 10,789,578, ratio 1.0636, and the 
probability of a male birth, 0.51541 with weight 6676. In particular, 
for 1840 the ratio of the male births to all of them is 0.51388. 
    Insert  
 
    m = 22,263,015, n = 11,473,437, m′ = 952,318, 
    n′ = 489,374, δ = 0.51541 − 0.51388 = 0.00153 
 
in formulas of § 108, then P =0.1834 and П = 0.5917 for the 
probability that the deviation should not be attributed to chance. It is 
seen that that probability is very low and has no possible meaning 
although for the year 1840 that ratio had attained a value only 
exceeding it in 1830 and 1828. 
    The total number of births for 23 years from 1817 to 1839 inclusive 
for France in entirety amounted to 22,263,015 and the mean annual 
number of births was 967,957. 1/86 of it, or 11,255, we consider as the 
mean number of these births in a department with a mean population. 
Insert m = 11,255, p = 0.51541 and l = 0.01541 in formula (33.1), then 
t = 2.313. The corresponding P = 0.99893 well enough measures the 
probability that the yearly ratio of male births to all births for such a 
department is contained within interval 0.51541 ± 0.01541 or 0.5 
[0.50000] and 0.53082.  
    A half of (1 − P) or 0.00053 well enough measures the probability 
that that ratio is smaller than 0.5 or that the number of female births 
will fortuitously exceed the number of male births. That singular fact 
should therefore only occur about once in 2000 cases, but, according 
to the yearly tables of the movement of population compiled by the 
prefectures, it happened 37 times in 23 years, − in 86·23 = 1978 trials. 
Independently from the remark made in § 166, we ought to conclude 
that the mean chance of male births experiences very considerable 
variations from one department to another and year to year.  
    Nevertheless, many of those registers presenting this anomaly are 
among those suspected by Demonferrand [(1838, p. 33) − B. B.] in 
other respects. For being better assured in their accuracy, it should be 
interesting to follow the succession of those deviations [?] and to see 
whether they indicate perturbations in the causes dominating all the 
births at once or whether they can not unlikely be attributed to causes 
whose variations are fortuitous and independent from one birth to 
another. 

13.2. Laws of Mortality and Population 
    171. Were it possible to guard a living being against all accidental 
causes of destruction whether leading to sudden and violent death or 
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calling forth diseases with death following after more or less time, we 
will observe the natural duration of life determined by intrinsic 
conditions of his organization. That duration undoubtedly differs from 
one individual of a species to another but a rather restricted number of 
observations is sufficient for obtaining a considerably stable mean, a 
measure of the longevity of the species. We can more or less approach 
those conditions and therefore approximately solve one of the most 
interesting problems of zoology, of comparing various species of 
animals with respect to their longevity and discover, if possible, the 
law according to which it depends on the variety of organization and 
functioning of the species and the action of the environment. In this 
direction we only have sketchy information.  
    Actually, there are only a few or none at all individuals dying 
naturally because of failed vitality. All of us are incessantly exposed to 
causes of destruction against which we struggle more or less 
successfully according to our power. An atmospheric variation not 
influencing a young man or leading to his passing indisposition causes 
the death of an old man. In this sense, as Bichat [(1799 – 1800/1822, p. 
2) − B. B.] put it, life is resistance to death. Therefore, even without 
distinguishing the causes of death, variations of mortality due to age, 
sex and other conditions provide precious indications about variations 
of vitality.  
    It is certain that mortality can decrease either because the action of 
destructive forces becomes less intensive or the resistance of the vital 
forces strengthens. And it is also doubtless that abundant energy of 
those forces during certain periods of life can multiply the dangers and 
indirectly contribute to the increase in mortality. 
    When considering mankind in particular, the knowledge of the 
chances of mortality is not only highly important for a physician, an 
administrator, an economist; it is of most lively interest for each of us. 
It can prevent us in ordinary life from exaggerating fears and hopes, 
can facilitate our submission to the severe laws of nature. 
    172. At the mid-17th century the celebrated Jean de Wit, a statesman 
and geometer, had been studying the probabilities of human life for 
calculating [the price of] annuities. Priority in such problems naturally 
belonged to a nation that passed ahead of all others in banking and 
credit operations [in particular]. As testified by Leibniz, Hudde, 
another Dutch geometer, initiated like Jean de Wit in management, 
also wrote on the same subject [see Haas (1956)]. 
    However, the first mortality table [life table] by the astronomer 
Halley compiled from the registers of the town of Breslau, appeared in 
1693 [in 1694]18. That subject had always preferentially attached the 
attention of statisticians and nowadays the number of the published 
pertinent tables is considerable. Nevertheless, their compilation is so 
difficult that they greatly diverge, and much time will undoubtedly 
pass before we arrive at quite satisfactory results19. 
    Suppose we select at random a large number of newborns, 10,000 
for example, and follow their lives until death. It will then be possible 
to show the number of survivors to each age, then to compile a 
mortality table after which it will be easy to obtain a table of 
probabilities of the duration of human life. That table will be corrupted 
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by fortuitous errors affecting each table of probabilities compiled from 
a restricted number of observations even when the conditions of 
randomness remain invariable during all the trials. Moreover, the table 
will be affected by sudden and irregular variations happening in the 
causes of mortality during the same time. Thus, a visitation of an 
epidemic in the twentieth year of observation [of study] will perturb 
the table at years 19 and 20. Furthermore, if during the time necessary 
for the compilation of the table the causes of mortality could have 
experienced slow and progressive variations, all the numbers in the 
table will be affected; its part describing old age will not anymore 
correspond with its other parts. 
    Organizations or associations uniting large numbers of people 
pursuing common interests can have their own registers and compile 
mortality tables for their members which will be perturbed by the same 
causes. Moreover, their initial dates are usually uncertain since 
members do not enter unions at the same age, they say nothing about 
the law of mortality for the first years of life, and they can only be 
applied to people of the same stratum. 
    173. The law of population of a given state, or of distribution of the 
entire population by ages, is evidently connected with the law of 
mortality. Population arrives at a stationary number when the yearly 
number of births equals the mean yearly number of deaths and there is 
no external movement, or emigration and immigration compensate one 
another. However, that double condition is not sufficient for the 
population to reach the stationary state. We can suppose, for example, 
that the number of births decreases but that at the same time the causes 
of death become less energetic and the number of deaths also 
diminishes. The mean duration of life therefore lengthens whereas the 
number of the population does not change. The law of population can 
vary even if there is no variation in the numbers of births and deaths. 
Mortality will, so to say, transfer elsewhere and will not affect the 
various ages the same way as before.  
    If the law of population of a state can be thought stationary, and 
emigration and immigration compensate one another at each age, a 
census discovering that law will at the same time and with the same 
precision indicate the law of mortality. Suppose for example that 
having 10,000 yearly births we find on 1 Jan. 1841 6000 people of age 
20 – 21 years, 6000 remaining out of the 10,000 born in 1820. Because 
of the stationary state of the population, 6000 people will remain on 1 
Jan. 1862 out of the 10,000 which should be born in 1841.  
    Suppose that the same census indicated 5900 people aged 21 – 22 
years; we will conclude that out of the 10,000, 100 die during their 
22nd year and that out of the 6000 of 21 years 100 die before reaching 
age 22. The ratio 100/6000 is the yearly danger, or the probability for 
individuals reaching a certain age to die the next year. Its variation can 
be regarded as the indicator of the variation of the action of causes of 
mortality at various ages.  
    The preceding suffices for understanding the compilation of 
mortality tables by a census [providing the distribution of the 
population] by ages under the hypothesis of a stationary law of 
population. We also ought to remark that for the earliest ages, when 
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mortality varies very rapidly, it is proper to compile these tables for 
each month rather than year. 
    174. Consider a table indicating the number of survivors at a given 
age. Suppose that out of 10,000 babies registered as having been born 
at the same time, 6000 reach the age of 21 and 3000 live at 65 years. 
We conclude that 34 years is the median value of the time left for 
those aged 21 years. This is what the authors usually call probable life 
(§ 68). It is ordinarily indicated in mortality tables for each age. The 
probable life at the moment of birth, or the median duration of life, is 
the age at which the number of those born at the same time is halved.  
    When following separately 10,000 babies born during the same year 
the sum of their ages at death divided by 10,000 is the mean duration 
of life, or the mean life (§ 67). And if we follow in the same manner 
the 6000 people reaching 21 years, the ratio of the sum of their ages at 
death divided by 6000 will be their resting mean life. 
    Mortality tables indicate the number of babies dying before reaching 
their first year, their number dying during their second year, etc. 
Suppose that all deaths during a year happened at the same time, for 
example, in the mid-year. When calculating the mean, we will obtain 
then an approximate value of the mean life. That value will be more 
exact if the table provides deaths by months, and in any case its error 
can be made negligible as compared with those occurring because of 
the imperfection of the data. 
    Under the hypothesis of a stationary law of population the mean life, 
in its proper sense, reckoned from the moment of birth is equal to the 
quotient of the number expressed by the total population divided by 
the number of yearly births. Suppose as above that there are 10,000 
yearly births and 100 of them die during their 22nd year. Suppose also 
for the sake of simplification that all births and deaths happen during 
the same day of the year. Out of the total population on 1 Jan. 1841 
those who ought to die at age 22 consist of a 100 born in 1840 and 
dying in 1862; of a hundred born in 1839 and dying in 1861; …; and 
finally of a 100 born in 1819 and dying in 1841. The total number of 
those people is equal to 100·22 or 22·100.  
    Consequently, we will again estimate the total population by 
summing the products of each age by the number of babies born in the 
[chosen] year and destined to die at that age. However, that sum 
divided by the number of yearly births is precisely the mean life 
reckoned from birth. Inversely, the mean life is expressed by the ratio 
of the total population divided by the yearly births20. 
    175. Practical difficulties of a general census22 and especially of 
censuses by age are great. Interior and exterior movements of the 
population as well as municipal and private interests prevent a high 
precision of the total numbers whereas an exact distribution by ages 
should be considered impossible. However, a frequent repetition of 
that operation carried out in France each five years, perfection of the 
administrative system, and means of checking provided by the 
registers of vital statistics and tables of military recruitment inspire 
hope that the results of the five-year censuses will someday serve as a 
solid foundation for statistical investigations. 
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    Instead of distribution by ages it is possible to apply the yearly acts 
of deaths. By the terms of the French law, they should indicate the age 
of the deceased so that the numbers of dying at each age can be 
immediately found. After comparing them with the numbers of yearly 
births we can compile a mortality table, once more under the 
hypothesis of a stationary law of population. In turn, it can serve for 
compiling a table of population such as provided by censuses by age. 
That method, much more practicable than the previous, has been 
actually applied from the very beginning23. Its inexactitude is caused 
by inexactitudes in the registers themselves, especially concerning 
ages, and by the chances of error inherent in compiling the acts of 
deaths. 
    176. Without, for the moment, taking into account these sources of 
error the determination of the law of mortality and all its connected 
elements will still be affected because of 1) Anomalies properly 
fortuitous and resulting from the restricted number of trials of the same 
randomness. Their influence can be indefinitely decreased by applying 
ever larger numbers. 2) Anomalies occasioned by sudden changes in 
the conditions of randomness or causes of mortality.  
    For example, in 1832 an epidemic [of cholera − B. B.] led to 
devastation and the census of 1842 will indicate its traces in all strata 
of population older than 10 years. It will register fewer individuals 
than there ought to have been as compared with those of a younger age 
group. The census will indicate a much higher mortality in the group 
situated between younger and older ages. On the contrary, the registers 
of the deaths in 1842 will indicate a very low mortality in the old ages 
which consists of a fewer number of individuals and therefore has 
fewer deaths than it should have had ordinarily. This remark is all the 
more applicable to the lacunas left in the virile population by long 
wars such as those that racked Europe for 24 years after the French 
revolution. 
    177. Emigration and immigration without being compensated for 
each age follow an appreciably constant law, since the law of 
population remains stationary [Fourier (1821b, § 67, p. 51) − B. B.]. 
However, for deriving in this case the law of mortality either by taking 
censuses by ages or studying the registers of deaths, we ought to know 
the laws which emigration and immigration are obeying.  
    For example, the population of cities consists of people of every 
occupation coming to find a job or seeking pleasure whereas many 
babies are sent far away to wet nurses and die there. Because of these 
various causes the acts of deaths of a city, when compared with the 
numbers of yearly births, can not provide a fair idea about the chances 
of death without taking into account the exterior movement. Inversely, 
the law of the exterior movement supposed constant can be derived by 
comparing those acts with a census by ages [Fourier (1821a) − B. B.]. 
    178. Finally, all nations influenced by our European civilization are 
still far from that stationary state to which we have supposed the laws 
of population and mortality are led. On the other hand, the law of 
mortality being influenced by changing progressive and secular causes 
indirectly varies the law of population whereas the conditions of the 
development of the population are changing directly, for example 
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because of ploughing up24 or introduction of new cultures, 
independently from the variation of the causes of mortality. 
    In all European states the population is nowadays increasing, 
although in different nations the rapidity of this process is very 
unequal. If we wish to compile a mortality table from the yearly acts of 
deaths, it is absolutely necessary to calculate and take into account that 
secular increase25. It is very easy to derive that correction if the growth 
of the population only results from the increase in births without 
modifying the chances of death at different ages. However, this is what 
can not be admitted. For obtaining a precise correction we should 
know exactly the required law. Nevertheless, when allowing for the 
incertitude inherent in other initial materials, it is possible to make that 
correction by trial and error with a sufficient precision. 
    179. We have mentioned the main causes of error and incertitude. 
Because of all of them mortality tables compiled until now greatly 
diverge. They are usually distributed in two categories, of slow and 
rapid extinction. Companies whose speculations include payment of 
annuities or life insurances base their calculations on either of these 
depending on their interests. In France, the table of Deparcieux 
compiled in 1746 had been applied for a long time and is still applied 
as a table of the first type. It was based on lists of the tontines of 1689 
and 1696 containing about 9000 deaths.  
    On the contrary, the table of Duvillard published in 1806 was 
compiled, as he stated, from a list containing about 100,000 deaths 
occurring before the revolution. Today, it certainly indicates a far too 
rapid mortality. In 1835, Bienaymé compared the tables of recruitment 
with official documents about the movement of the population and left 
no doubt about that conclusion. 
    Quetelet’s calculation for Belgium [(1836, t. 1, pp. 161 – 164) − B. 
B.] also lead to an appreciably slower law of mortality than 
Duvillard’s, and finally Demonferrand (1838) exhaustively analysed 
official materials and derived a still much slower mortality for France 
in its entirety. Nevertheless, it considerably differed from one 
department to another. Here is a summary table comparing the results 
of Duvillard and Demonferrand and thus providing an idea of their 
divergence and of its limits. [Cournot provided a table showing the 
mean life and the yearly danger at ages 0(1)5, 10(5)105 years 
according to both authors, separately for each sex.] 
    180. The divergence of the tables mostly concerns the first years of 
life. During that period mortality is so rapid that, according to Quetelet 
[(1836, t. 1, p. 167) − B. B.], the number of babies is reduced by 1/10 
by the end of the fist month and by 1/4 by the end of the first year. 
During the first month 4 times more babies die than during the second 
month and almost as many as during two years after the first year 
although then also mortality is still very high.  
    The maximal value of the resting mean life occurs between ages 5 
and 6 years [Quetelet (1836, t. 1, p. 168) − B. B.] and the minimal 
yearly danger, at ages 12 – 14 years, just before reaching puberty. 
After age 50 the discordance between the tables becomes much less 
pronounced and we can regard the law of mortality as very well known 
for the period extending from then to very advanced ages. Then the 
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incertitude of the tables again becomes very large because of the small 
number of cases of anomalous longevity. 
    181. The law of mortality is not at all the same for both sexes 
[Quetelet (1836, t. 1, p. 155) − B. B.]. Even before birth, as we have 
remarked in §§ 168 and 169, the chances of death preferentially affect 
babies of the male sex. This becomes doubtless by the acts of deaths 
for the stillborn showing 13 or 14 boys for 10 girls [Quetelet & Smit 
(1832) − B. B.]. According to Quetelet’s studies, during the first 10 
months of life mortality of boys continues to exceed remarkably the 
mortality of girls although relatively the former gradually lowers 
[Quetelet (1836, t. 1, p. 158) − B. B.]. At the age of 2 years these 
mortalities almost equalize.  
    By the age of puberty mortality of women exceeds the mortality of 
men. During ages 20 – 25 years, the period of the most lively passions, 
mortality of men becomes once more predominant after which 
mortality of women again takes the lead until age 50, or during all the 
time of fecundity. Statistics does not at all confirm the usual prejudice 
about the existence of a maximal value of feminine mortality at the 
critical period when that fecundity ceases. The yearly danger increases 
with age for women from the age of puberty to death but for men it 
passes its maximal value at 24 years and its minimal value at 30. 
    These results of Demonferrand’s calculations [(1838, p. 44) − B. B.] 
agree with those of Quetelet and are among the most interesting which 
statistics was able to obtain. They should be thoroughly verified when 
it will not be feared that the law of population is still affected by the 
lacunas left in the virile generation by wars. 
    According to Quetelet [(1836, t. 1, p. 141) − B. B.], after age 50 the 
yearly danger is approximately the same for both sexes. Once more 
contrary to common prejudice, the Demonferrand tables show that it 
continues to be a bit greater for women.  
    Mortality is higher in towns than in rural areas. It considerably 
varies depending on local and climatic influences, on morals and 
occupations. We will however deviate from our plan by entering here 
into more detail. 
 

Notes 
    1. See especially Quetelet (1836) and the recently published treatise of C. 
Bernoulli (1840 – 1841), a professor in Basel. A. A. C. Elements of population 
apparently mean basic principles governing it. O. S. 
    2. Bru refers to several sources on the sex ratio at birth of domestic animals and 
mentions Darwin, see Sheynin (1980, pp. 346 – 347). 
    3. With respect to mankind, if replacing habits by morals or manners, this was the 
idea of Montesquieu. [B. B.] 
    4. Rather in the mid-17th century (Graunt). [B. B.] 
    5. Official registers had been regularly published since 1817 in the Annuaire of the 
Bureau of Longitudes. See Levasseur (1889). [B. B.] 
    6. On the changes of that ratio in time see Worms (1912) and Schwartz (1975, pp. 
95 – 111). [B. B.] 
    7. The Editors were Poisson and the astronomer Mathieu. [B. B.] 
    8. Cournot borrowed that table from C. Bernoulli (1840, pp. 139 – 140). See also 
Quetelet (1836, t. 1, p. 43). [B. B.] 
    9. Schwartz (1975) expressed an opposite opinion. [B. B.] 
    10. The C. r. Acad. Sci. Paris mentions 52 which is undoubtedly wrong. A. A. C. 
    11. See Poisson (1830) and Quetelet (1836, t. 1, pp. 46 – 51). [B. B.] 
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    12. Noted by Graunt in 1662. See also Laplace (1814/1995, pp. 40 – 41) who 
remarked that in Paris the ratio male/female for abandoned babies was smaller than 
in general. [B. B.] 
    13. Cournot borrowed his table from the Annuaires of the Bureau of Longitudes 
reproduced by Fourier in his Recherches statistiques … [B. B.] 
    14. Bru refers to Quetelet (1836, t. 1, pp. 56 and 57) and to both mentioned 
authors. 
    15. I do not agree with Cournot and I do not think that Laplace (see just above) or 
anyone else could have refuted Prévost. 
    16. Worms (1912, Chapter 10) cites Bertillon the father. [B. B.] 
    17. See especially Quetelet (1836, t. 1, p. 156) and Demonferrand (1838, pp. 16 – 
17). [B. B.] 
    18. Graunt is known to have compiled the first (very imperfect) life table. 
    19. In 1834, the Paris Academy of Sciences set up a commission (Poisson, 
Mathieu, Dupin) with the aim of indicating methods for obtaining more exact 
mortality tables. [B. B.] But what did it decide? O. S. 
    20. Denote by fxdx the probability for a person aged x to die during time dx and by 
Fx the probability that a newborn baby attains age x [and dies at once]. Then 
 

    ]
0

, exp[
x

fxdxdFx Fxfxdx Fx ∫= − = −   

 
with Fx = 1 at x = 0. If fx = f1x + f2x + … where f1x, f2x, … correspond to causes of 
death which act independently from each other and possess their own proper laws. 
Then Fx = F1x·F2x·… where F1x would be the initial function Fx had there only been 
one cause of mortality to which corresponds f1x. If that cause is suppressed, the 
altered function Fx denoted by (Fx) will be 
 
    (Fx) = Fx/F1x. 
 
    The probability for a newborn baby to die at age x is − dFx so that his mean 
duration of life is 
 

    
0 0

xdFx FxdxM
∞ ∞

= −∫ ∫= −   

 
where we applied integration by parts after noting that the product xFx should 
disappear at both limits of integration. At the same time the mean duration of life at 
age x is 
 

    
1

.
x

Fxdx
Fx

∞

∫   

 
Its median duration at birth is the root ξ of equation Fx = 1/2 and the same duration 
at age x is obtained from the equation F(x + ξ) = Fx/2.  
    Suppose that the law of population is stationary and disregard exterior movement, 
then that law will be expressed by Fx so that 
 

    
0

FxdxFxdx
∞
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is the probability that a man chosen by chance will be aged x and the number of 
people of ages between x1 and x2 is proportional to the integral 
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and if a year is taken as a unit of time, and the number of yearly births, N, is 
multiplied by that integral it will express the total population  
 

    
0

FxdxP N
∞

∫= . 

 
The mean life under the assumed hypothesis is the quotient of that total population 
divided by the number of [yearly] births. The mean age of the population is 
 

    
0 0

xFxdx Fxdx
∞ ∞

÷∫ ∫  

 
whereas the median age ξ is obtained from the equation 
 

    
ξ
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1
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Fxdx Fxdx
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    Denote by D0, D1, D2, … the numbers of yearly deaths for individuals aged at 
death less than a year, from 1 to 2 years, … Then 
 

    
1 1 22 3

], ], ],...0 1 2
0 0 11 2

[1 [ [Fxdx Fxdx Fxdx Fxdx FxdxD N D N D N− −∫ ∫ ∫∫ ∫= − = =   

    N = D0 + D1 + D2 + … 
 
conforming to the hypothesis of stationary population.  
    We can consider men and women separately. Then, still by the same hypothesis,  
 

    , , ,  
0 0

F xdx F xdx P N M P N MM M
∞ ∞
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where one and two strokes are applied for those sexes respectively. Now, N′ > N″ but 
M″ possibly exceeds M′. Adopting the numbers calculated by Demonferrand [(1838, 
pp. 46 – 47) − B. B.], although for a non-stationary population, we get 
 
    M′ = 38 years 4 months, M″ = 40 y. 10 m., M″/M′ = 1.0652.  
 
    According to Rickman [1831 − B. B.], in England 
 
    M′ = 32 years, M″ = 34 years, M″/M′ = 1.0625. 
 
The values of the ratio M″/M′ are quite near to the likely values of N′/N″ so that there 
is some room to believe that for a stationary population the ratio P′/P″ little differs 
from 1. In any case, it differs less than N′/N″ does as though the excess of male births 
was the final cause for approximately compensating the shorter mean life or the 
higher chances of death of men. It is certainly unreasonable to admit a strict 
compensation and to suppose that the functions F′x, F″x are adjusted so as the 
integrals M′, M″ will be precisely in the inverse ratios of the numbers N′, N″ since 
being determined by a system of efficient causes very different from those 
influencing the integrals M′, M″. Whatever ideas we have about the final aim of 
nature, it certainly does not proceed with such mathematical exactitude. 
    Quite recently Pouillet [1842 − B. B.] proposed a law for a population exposed to 
the influence of perturbative causes and gradually approaching a stationary state. He 
expressed it by the proportion 
 
    (D′/P′)/(D″/P″) ≈ N′/N″ 
 
so that in the limit P′ = P″ when D′ and D″ become respectively equal to N′ and N″. 
The objections to this law21 proved that it was not strictly mathematical and that it 
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was not necessary to calculate six decimals because, even after all the anomalies of 
chance were compensated, the limiting equality P′ = P″ could evidently be only 
considered as an approximation. 
    Nevertheless, his indicated relation understood as a result of approximate 
compensation is still not less remarkable exactly because it could have denoted a 
tendency of natural causes to maintain an almost strict equality P′ = P″ in a 
stationary population. A. A. C. 
    21. Objections were made the same year by Mathieu, Dupin and Demonferrand (C. 
r. Acad. Sci. Paris, t. 15, pp. 1021 – 1028, 1028 – 1036 and 1097 – 1106). [B. B.] 
    22. Censuses in France had [have?] been carries out in 1801, 1806, 1821 and each 
10 years beginning with 1831. Plausible results were first obtained in 1841. [B. B.] 
    23. Beginning with Halley (1694). [B. B.] 
    24. The French term was défrichements. Bru noted that Laplace (1814, p. CV) had 
mentioned it, but Dale (Laplace 1814/1995, p. 85) had translated it as easily tilled. 
    25. In this connection Lacroix cited Euler. [B. B.] 
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Chapter 14. On Insurance 
    182. A contract for insurance had been barely known to ancient 
lawyers1, but, with the development of commercial institutions and 
spirit of association, it tends to become one of the most ordinary acts 
of life. The theory of insurance considered in its generality is very 
tightly connected with the mathematical doctrine of chances and 
randomness so that we devote to it a separate chapter. 
    Suppose, for treating at first the simplest case, that a large number, 
m, of individuals insure a thing A prone to perish because of a chance 
event. Let a be its sale price had there been no chance of its loss; p, the 
chance of its loss during a given time, a year for example, or what can 
be called for short the yearly risk. Then there will be probability P that 
the total yearly value of accidents or the annual sum of indemnities 
payable by the insurance office is contained within the limits 
 

    2 (1 ).mpa ta mp p± −   

 
Here, P and t are connected as indicated in § 33. 
    If the insurance is based on fixed premiums and w denotes the 
premium rate then wa is the yearly payment made by the insurant2. 
Evidently, w is larger than p not only because of management 
expenses and the interest on the circulating and reserve capital, but for 
providing the insurer the benefit due him owing to his industry. The 
yearly profit (boni) of the insurance office or the sum from which the 
management expenses, the interest on the capital and the profit 
(benefices) of the insurer should with probability P oscillate between 
the limits 
 

    ( ) 2 (1 ).ma w p ta mp p− ± −                                  (182.1) 

 
    In general, when considering the insurance of things [of property] 
the risk p is a very small fraction3. Suppose for example that p = 0.001, 
w = 0.0015 and m = 10,000. Then there will be probability 0.571 that 
the number of accidents is not either larger than 12 or smaller than 8 
so that the boni is contained within 3a and 7a or (5 ± 2)a. And rather 
often (about 48 times in 1000) the insurance office will suffer a loss. 
With w = 0.002, twice exceeding p, a deficit becomes extremely 
unlikely4.  
    If m = 100,000, and w remains equal to 0.0015 and still exceeds the 
risk p by 0.0005, there will be probability 1/2 that the boni is contained 
within the limits (50 ± 6.742)a. We will be authorized to consider the 
possibility of a loss as almost physically impossible. Admitting that 
the insurer wishing to expand his business or get ahead of his 
competitors lowers the premium rate by 0.00125, his mean benefit will 
become 5 times larger and in addition he could regard himself 
sufficiently guaranteed against losses. 
    183. It seems at first sight that if the individual or the insurance 
office continues operations for many years in succession with 
sufficient capital, the loss during one year can be compensated by the 
previous or future profits. Take, for example, a series of 10 years. The 
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insurer will enjoy the same security and can lower the premium rate 
just as if he is in business only for one year with ten times more 
insurants. Here, however, we make a grave mistake [Laplace 
(1812/1886, p. 432) − B. B.] as Bienaymé (1839) justly noted. It 
occurs because of the compound interest5. Suppose that the office 
liquidates business after a decade. If an extraordinary loss had 
occurred during the first year, the compound interest on the advanced 
capital will considerably burden the office. If, on the contrary, that first 
year was extraordinarily favourable, the compound interest on the 
profit will considerably increase the definitive profit of the 
shareholders. 
    Therefore, during the same period many offices with the same 
number of cases and prone to the same chances can either enjoy large 
profits or suffer large losses, even exhaust their reserve capital and, if 
the number of yearly cases is not sufficient for appropriately 
narrowing random oscillations, find themselves compelled to liquidate 
their business before the fixed time. These enterprises will actually 
become speculations in chances.  
    Being placed in such conditions, they will only be able to secure 
themselves against the chances of ruin by exaggerating the rate. Even 
if they have sufficient capital for guaranteeing them from a forced 
liquidation, an indefinite extension of the duration of their work will 
not indefinitely narrow the limits of their losses or secure a mean 
fortuitous gain. The action of the compound interest tends to amplify 
the deviations almost inversely to their decrease owing to the increase 
in the number of cases with time.  
    184. Some authors had attempted to explain the insurant’s 
advantages of a contract for insurance, in spite of its being a source of 
the insurer’s profit, by the distinction between the mathematical and 
moral expectation (§ 52)6. However, in our opinion these explanations, 
the names of their proponents notwithstanding, are vague and arbitrary 
and there are no real reasons for resorting to them. Security provided 
by the contract for insurance to the insurant is undoubtedly a boon, but 
moral and inappreciable. It can not be entered in the balance-sheet of a 
particular insurant, nor does it increase directly his fortune or the 
social wealth, that is, the sum of the fortunes separately possessed by 
the members of the society.  
    Nevertheless, the institute of insurance indirectly provides an 
appreciable increase in both fortunes. Thus, a building which can be 
destroyed by a chance event is less commercially valued than another 
one providing the same profit, utilized under the same conditions but 
not running the same risk of perishing. If p denotes the yearly chance 
of perishing; a, the value of the second building; r, its profit rate, then 
the depreciation of the first one will in general be much larger than 
pa/r7. One or another buyer will undoubtedly be disposed according to 
his temper and manner to depreciate either more or less considerably, 
but these are individual estimations as all of them are on isolated 
markets.  
    In the course of commerce they will, or tend to be reduced to a 
normal and mean rate. Only experience, that is, the quoting can find 
out the extent of the depreciation of a building because of the chance 
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of its perishing. Depreciation is a function, which we have elsewhere 
[1838] called empirical, of the elements [arguments] p and a, whose 
determination is nowadays impossible because the rapid and 
progressive variations in the system of values require numerous 
observations and an appreciably stationary economy. As we said above, 
it is only permissible to state that such depreciation considerably 
exceeds pa/r. 
    Actually, as we saw, the more does the number of the insurants 
increase, the more can the insurer lower the premium rate just as 
competition also compels. The yearly sum demanded from the 
insurants will ever less exceed pa which corresponds to a depreciation 
of the capital ever less exceeding pa/r. Conversely, the more the 
number of insurants decreases, the stronger is the insurer compelled to 
increase that rate so as to secure sufficiently against chances of loss. 
And the increased incertitude of his speculations reduces competition 
which compelled him to be content with a smaller rate.  
    Therefore, the depreciation of buildings exceeds pa/r. In an 
imagined case of one single insurant the premium rate and the 
corresponding depreciation attain their maximal values. Otherwise it 
should be admitted (which is impossible) that that rate, after increasing 
with a graduate decrease of the number of insurants, will decrease 
once more with a further decrease of that number. However, when a 
buyer of a building subject to chance of an accident can not insure it, 
he is compelled to act disorderly both as an insurer and insurant. He is 
an insurer with one single insurant for whom the premium rate attains 
its maximal value. The corresponding depreciation of the building with 
its interest representing that fictitious premium should exceed its value 
calculated as an insurance premium in the most unfavourable case of 
insurance8.  
    We certainly do not at all wish to say that each person acquiring a 
building prone to a chance of its loss will undoubtedly take into 
account that depreciation or even that no one will pay for it [in full] as 
though that chance did nor exist. We are discussing the laws of 
economics which dominate general and mean results compensating 
random deviations rather than accidental causes which determine 
conditions on some market.  
    From the moment when some office offers full insurance of a 
building prone to risk for a yearly premium w little differing from p, 
there is no more reasons for the depreciation to exceed wa/r which is 
the capital ensuring interest calculated according to the rate for such 
buildings located in the neighbourhood and sufficient for the payment 
of the yearly premium. The fortune of the owner of the endangered 
building and therefore the social wealth considered as the sum of the 
wealth of individuals will increase by the whole difference between 
wa/r and the depreciation of the building had the owner no means for 
getting rid of the risk.  
    That increase of the social wealth, which recent advances will 
certainly make ever more evident, is the result of the institution of 
insurance rather than of a contract for insurance. Indeed, it little 
matters for fixing the commercial value of the building whether it is 
actually insured. Suffice it that its owner can insure it at will. This is a 
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point where our theory is essentially distinguished from those based on 
the alleged measure of moral expectation.  
    Apart from this effect of the institution of insurance there is another 
resulting from the contract itself and tending to prevent the diminution 
of the social capital. If the insured [uninsured] building is burned down, 
the owner’s capital is lost, and if he builds it anew, he does not at all 
spend his savings but withdraws capital from other productive 
investments. On the contrary, if the building is insured, the capital is 
returned to its owner. It is obtained from the premiums of other 
insurants, deducted from the income of many, is a saving which, 
strictly speaking, could have been made but which ordinarily will not 
be done without a contract for insurance. 
    185. We have explained how the institution of insurance tends to 
increase the sell price of endangered funds and therefore the social 
wealth. By itself, insurance does not create actual values, nor does it 
oppose their loss. We can even fear that a slackened supervision will 
cause oftener destruction. However, we should not confuse an increase 
of wealth owing to a rise in values [in cost] and to increase in material 
production. The sum of wealth or of the values capable of entering 
commerce can considerably change from one epoch or country to 
another without the variations in material production being of the same 
order or even when it varies in the opposite direction. The science 
known as political economy ought to develop the consequences of this 
fundamental distinction9. 
    When the contract for insurance deals with risks of fabrication and 
commerce it becomes or should become the cause of an increase in 
material production and consumption and at the same time of an 
increase in the wealth or the value since it encourages industrial and 
commercial activity (§ 54 [§ 53 − B. B.]). Because of the great risk a 
prudent speculator will refuse to undertake a venture capable of 
providing him a large profit, supporting other activities, improving the 
well-being of consumers and making everything profitable for the 
entire society. But he will not hesitate to start, if he wishes, such a 
venture after ensuring a guarantee against the risk by paying a 
premium.  
    186. In addition to the institution of insurance by payment of 
premiums there appear, both in theory and practice, institutions of 
mutual insurance. If a large number m of individuals, each possessing 
a thing A (§ 182), unite for jointly covering the losses which some of 
them experience by chance during a year, there will be probability P 
that the contribution of each of them will be contained within the 
limits  
 

    2 (1 )/ .pa ta p p m± −   

 
    In addition, each ought to participate in covering the expenses of the 
association. With an increase of membership the fortuitous variations 
of their contributions will become contained in narrower limits and 
[together with those contributions] tend to change into a fixed 
premium. 
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    On the other hand, with that increase it will be more difficult for 
each interested member to supervise effectively the agents of the 
association. In general, it could be said that for very large numbers m, 
when competition narrowed the profits of the insurer and contained 
them within fair limits, the great economic principle of division of 
responsibilities and work10 tends to prefer the system of insurance with 
fixed premiums to mutual assurance. 
    On the contrary11, when the number of the insurants is very small 
for the competition to restrict the insurer’s profit, or even when the 
competition exists, the extremely restricted scope of operations 
compels the insurer to increase the mean profit for sufficiently 
guaranteeing himself against the chances of ruin (§ 183), − in these 
circumstances the system of mutual insurance should be preferred. 
    187. In ordinary insurance it is opportune to encounter such simple 
problems which we first of all treat for conveniently describing general 
principles. Usually insurance deals with unequally valued properties 
not exposed to the same chances of destruction. It also often happens 
that the insured property can be lost completely or partly depending on 
the gravity of the accident. Finally, complete independence of the 
causes of an accident for each insured property does not at all exist 
frequently. For example, the same fire can destroy at once a large 
number of houses insured against such accidents by the same office.  
    When taking into account the inequality of risks for different 
insured properties the insurance offices usually range them in classes 
and sharply change the premiums from one class to another. 
Maintaining here the law of continuity is known to be impossible and 
the errors inherent in the hypothesis of a fictitious discontinuity merge 
with many others from which calculations can not be freed.  
    Denote by mi the number of the insured buildings whose value is ai 
and the yearly risk, pi. There will be probability P that the sum of the 
indemnities paid yearly by the insurance office will be contained 
within the limits [Laplace (1812/1886, pp. 431 – 432) − B. B.] 
 
   1 1 1 2 2 2 ...m p a m p a+ + ±  

    2 2
1 1 1 1 2 2 2 22[ (1 ) (1 ) ...].t m p p a m p p a− + − +               (187.1)  

 
    The amplitude of the fortuitous oscillations is smaller12 when the 
values ai are equal with their sum remaining constant and in addition 
when all the buildings are running the same risk equal to the mean of 
pi. To put it otherwise, the amplitude of fortuitous oscillations 
increases with an unequal distribution of either the total insured value 
or of what can be called the common fund of risks (§ 82).  
    188. If the insurance is mutual, and the contributions of each 
member of the association is proportional to the numbers a and p, that 
is, to the insured value and the extent of risk, a member belonging to 
class i will have probability P that his yearly contribution is contained 
within the limits 
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    His mean contribution will always be piai with any number of 
members, any risks and insured values. However, the fortuitous 
variation of his contribution will increase if new members deposit too 
large or too risky properties as compared with previously insured 
values. From this viewpoint, when following the usual indicated rule, 
admissions to the association can be more detrimental than 
advantageous for the existing members. 
    To fix this idea, suppose that there are 2000 members each of them 
having deposited value a1 and 1000 to be admitted and to deposit value 
a2. For the sake of simplicity suppose also that all the risks are the 
same. The existing members will benefit by accepting newcomers if a2 
< 4a1. Otherwise admittance will contradict the aim of insurance by 
increasing the future yearly irregularities in the contributions. 
    I owe an ingenious method of overcoming that difficulty [?] to 
Bienaymé’s friendly communications. The supposed yearly loss µ is 
the sum of the mean loss 
 
    M = m1p1a1 + m2p2a2 + … 
 
and, with probability P, the random deviation (µ − M) is contained 
within the limits 
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    With the total loss being µ its part burdening members of class i is 
µ i. Multiplying each µ i by its corresponding probability we will obtain 
the mean13 
 

    
2

1 1 1 2 2 2
2 2

1 1 1 1 2 2 2 2

[µ ( ...)] (1 )

(1 ) (1 ) ...
i i i i

i i i

m p a m p a m p p a
m p a

m p p a m p p a

− + + −
+ =

− + − +
 

  

    
1 1 1 2 12 2 ...

i i im p a
M

m p a m p a
+

+ +
 

    
2

2 2
1 1 1 1 2 2 2 2

(1 )
(µ )

(1 ) (1 ) ...
i i i im p p a

M
m p p a m p p a

−
−

− + − +
.             (188.1) 

 
    Now, the contribution of members of the class i to the mean loss M 
is proportional to the factor multiplied above by that loss and is 
therefore reduced to mipiai whereas their contribution to the random 
deviation (µ − M) is proportional to the factor multiplied above by that 
deviation. 
    When following that rule, two or more classes of members will 
always benefit by joining up since such a union or an accession of new 
members always tends to decrease the amplitude of random variations 
in each contribution. Suppose for the sake of simplicity that there are 
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only two classes of insurants. The amplitude of those variations for 
those of the first class is proportional to 
 

    2
1 1 1 12 (1 ) .m p p a−  

 
After joining up the amplitude of the variations in the total deviation, 
with t and P remaining constant, will be proportional to 
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    By the Bienaymé’s rule the part falling on the first class is 
proportional to the factor multiplied by (µ − M) in formula (188.1). 
Necessarily 
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since this inequality, after cancelling out the common factors, is 
reduced to14 
 

    
2

1 1 1 1
2 2

1 1 1 1 2 2 2 2

(1 )
1 .

(1 ) (1 )

m p p a

m p p a m p p a

−
>

− + −
  

 
    The Bienaymé rule is very simple, but practice all by itself would 
have never suggested it and nothing indicates that it is known to those 
who had until now treated insurance. It should become the basis of 
contracts for mutual insurance and be a fundamental condition for 
uniting several insurance offices, pension or mutual aid funds. It is not 
seen whether that rule can be precisely applied to contracts with fixed 
premiums. 
    However, in such cases the insurer, wishing to be better guaranteed 
against the chances of loss, can compile the premium rate from two 
parts, one proportional to pa, and the other, to p(1 – p)a2 so that with p 
always less than 1/2, the sum paid by the insurants will increase 
greater than proportionally to the risk and the insured value. Still, the 
usual exaggeration of the premium shows that insurance offices find 
more advantageous to offer a discount on high values for increasing 
the extent of their business. 
    189. For showing by a very simple example how can the unequal 
burden of accidents be allowed for in calculations, suppose that all the 
insured properties, m in number, are of equal value and run the same 
risks. Let p be the probability of a total destruction of a thing, or the 
probability that the insurer loses capital equal to the value a of the 
insured thing; p′, the probability of loss a′ < a, etc. Then there will be 
probability P that the sum of indemnities paid by the insurance office 
is contained within limits 
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    Actually, the range of the risks varies from one property to another. 
All things being equal, a large property should have more chances than 
a small one to avoid total destruction. If the insurance is mutual, the 
contribution of each member for covering the mean loss should be 
proportional to the value of the function (pa + p′a′ + …) for the 
insured property. The other part of the contribution covering 
deviations is calculated by a rule similar to that indicated above. 
    190. In insurance, all the probabilities of risk entering like elements 
[like arguments] in the preceding formulas can not at all be assigned in 
advance. However, it is possible to determine them by experience15 
and the more exactly the larger is the number of compiled facts and the 
better they are classified. The registers of insurance offices provide 
valuable pertinent documents. However, there is a certain 
circumstance affecting the formulas estimating error and impossible to 
be taken into account theoretically. It is the lack of complete 
independence between the chances of accidents for different insured 
properties. A fire destroying a whole town will derange all the 
commercial calculations based on the mathematical law of 
compensation in a succession of random independent events.  
    The chance of such accidents can not be reasonably ignored so that 
an insurance office dealing with fixed premiums will more or less 
resemble a gambler’s lot. What we say about accidents caused by fire 
is all the more applicable to those falling upon harvest and possibly 
extending over a vast territory. If an office insuring against such 
chances does not considerably multiply its cases and cover a much 
greater territory than possibly dominated by solidary accidents and in 
addition does not have sufficient capital for bearing the burden of 
disastrous years, it can not provide its insurants a complete guarantee 
or sufficiently avert chances of ruin. In any case it should considerably 
exaggerate the premiums.  
    In such circumstances the system of mutual insurance shows all its 
advantages. The helpful effects of a social contract of which mutual 
insurance is only a particular case, are based on human nature itself 
and persist whichever is the burden of chances owing to which people 
unite, and whether the harmful causes against which they join their 
efforts and resources are solidary or independent16.  
    191. The contract for insurance can take most various forms. The 
bank that countersigns commercial promissory notes and thus ensuring 
trust guarantees the necessary payment in due time. A fraction of the 
ordinary interest on the capital can be considered as an insurance 
premium against the debtor’s insolvency. Economists disapproving of 
laws restricting the interest rate based their arguments on that very 
principle. In case of loans connected with great risks the probable 
profit of the creditor should at least be equivalent to the insurance 
premium for the sum of the risk plus the interest on the same capital 
had it not been risked or ran the usual commercial risk.  
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    By extracting yearly deductions from the salary of an employé a 
pension fund assures him of an annuity after reaching a certain age or 
completing a determined period of working. Yearly, monthly or 
weekly dues paid by a worker [see Hubard (1852) and Debouteville 
(1844) − B. B.] to a mutual aid fund assures him of an allowance in 
case of illness or an aid for his widow and children in case of his death 
etc. A large number of establishments created for protecting the 
interests of the public or individuals base their activities on general 
principles of insurance applied to probabilities of human life. We 
restrict our account to indicating their main operations. 
    [1] Determination of annuities on one or more lives, reversible 
partly or entirely, and ensured by a capital paid at the conclusion of the 
contract. 
    [2] Assurance of a life pension or a retirement pension paid out after 
a certain age or a determined period in exchange for yearly deductions 
or for an annuity paid out until pensionable age.  
    [3] Assurance of a life pension for the widow in case of a preceding 
death of the husband or after a determined or undetermined period 
ensured by investing a capital or by yearly payments made by him 
during his lifetime. 
    [4] Assurance of a capital for the widow or children at the death of 
husband or father ensured by husband or father who pay annuities 
during their lifetime or pay a lump capital. 
    [5] [Managing] tontines, or many individuals uniting their funds 
with the interest on the common fund to be shared by the survivors. 
The capital itself is given back to the last survivor or shared by several 
of them according to various rules (§ 52)17. 
    For solving all the problems connected with, or similar to those 
operations account should be taken not only of chances of death but, 
because of the compound interest, also of various values of the same 
sum payable at different moments. Denote by A the sum actually paid 
for establishing a life annuity a, by r, the interest rate; and by p1, p2, …, 
the probabilities that the annuitant will live 1, 2, … years. Then 
[Lacroix (1816/1833, § 125, p. 222) − B. B.] 
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For the sake of simplicity we have neglected here the proportional 
possible arrears down to the payer at the death of the annuitant. 
    It is well known that a company speculating in annuities should 
demand the payment of a capital much exceeding the capital A 
determined by the preceding formula. It is also known that the 
probabilities p1, p2, … should be calculated by mortality tables 
representing the law of mortality of annuitants rather than by tables of 
mean mortality. For being better guarded against the chances of loss 
companies usually calculate A by tables of slow mortality (§ 179) 
considered as limiting the veritable numbers. 
    Suppose on the contrary that it is required to determine the yearly 
life payment b to a company for giving up capital A to the payer’s 
heirs. This problem is solved very simply if imagining as Laplace did 
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that the payer of the yearly dues pays [instead?] capital A to be 
reimbursed at his death. Or, rather, he actually pays out the value 
stipulated by the company for an annuity a on his own life which 
exceeds the dues b by the interest on capital A because this interest 
should compensate a part of the annuity equivalent to capital A. 
Therefore, b = a – rA and is always determined as a function of A by 
formula (191.1). For pertinent numerical calculations the company 
determines the values of p1, p2, … by tables of rapid mortality.  
    More details can be found in special contributions [Baily (1836) − B. 
B.]. Here, it was sufficient to describe our subject in the most general 
way. 
 

Notes 
    1. On the history of insurance in France see Richard (1956). [B. B.] 
    2. The first French company to introduce fixed premium appeared in 1819, see 
Hamon (1896). [B. B.] 
    3. Lacroix (1816/1833, p. 241) described a manuscript in which the risk of fire for 
stone buildings with slated roofs was estimated as 1/20,000. According to a note that 
he kindly sent me, he paid an agency for mutual fire insurance for a house in Paris 
with evaluated value of 300,000 francs [Cournot mentioned the payments made in 
1836 – 1842 amounting to 44 fr 95 c in 1836 and decreasing, largely monotonically, 
to 29 fr 90 c.] or about 12 c for 1000 francs of the property which agrees with the 
rate stated by Lacroix [not at all!]. As an extreme case, British offices estimate the 
risk of losing a whaler as 1/100. A. A. C. 
    4. When the product mp is not very large, either it is necessary to take into account 
the second term of formula (33.2) or, for achieving a more precise result, to apply the 
formula 
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provided by Poisson (1837, § 81) in which P is the probability that there will not be 
more than n accidents for m insured properties. 
    For better judging the degree of approximation ensured by that formula we 
compare that probability for p = 0.01 and m = 200 with rigorous formulas (Lacroix 
1816/1833, p. 244). In the following table (p) denotes the probability of n accidents, 
and P is the sum of the numbers (p) or the probability that the number of accidents 
will not exceed n. [Cournot provides a table for n = 0(1)11. The values of (p) and P 
are given both approximately and exactly to 6 decimals, and Bru, having checked 
them against Pearson (1914, Table 51), states that all of them are correct.] 
    The differences are of the order quite permissible to neglect. We are all the more 
authorized to apply that formula for larger values of m or smaller values of p than 
they usually are. For avoiding excessive complications we suppose that it is still 
possible to apply formula (33.2) reduced to its first term. A. A. C. 
    5. Lacroix had remarked on the effect of compound interest whereas Cournot 
followed Bienaymé (1839) whose note is not easy to understand at once. The same is 
true with respect to Cournot’s pertinent paragraph, see below.  
    Apply the notation of § 182 and denote by r the interest. Each year the profit of 
the insurer oscillates with probability P within the limits (182.1). In the n-th year it 
will oscillate with the same probability within those limits divided by (1 + r)n so that 
the total profit for n first years will be contained within 
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     For a large n, when neglecting r2, we have 
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The limits do not narrow and the enterprise becomes a speculation in chances. [B. 
B.] 
    6. See especially Fourier (1819). A. A. C. In addition, see Laplace (1812/1886, pp. 
447 and 454). [B. B.] 
    7. Indeed, pa/r is the sum of the infinite progression pa/(1 + r) + pa/(1+r)2 + … 
See also Cournot’s formula (191.1). [B. B.] 
    8. Someone will perhaps object to the administration of a lottery, operating under 
conditions of monopoly, fixing the price of its tickets in excess of their mathematical 
expectation (§ 55). [Some excess is necessary.] However, such an objection is not 
solidly based. Lotteries are directed towards a very exceptionable [and numerous − O. 
S.] kind of people bewildered by ignorance or passion. For them, games of chance 
became an unnatural necessity and they are compelled to satisfy it by coming to the 
administration that enjoys a monopoly on chances.  
   On the contrary, the man raising the price of a building he is selling, in general 
does not at all experience any need to gamble. Far from studying the chances 
inherent in realty, he is subjected to them against his will. If he accidentally does 
have a passion for games of chance he will rather speculate in chances luring him by 
the prospect of unlikely profit. A. A. C. 
    9. See especially my contribution (1838, Chapters 1 and 12). A. A. C. 
    10. That principle is usually attributed to A. Smith, but Diderot (Encyclopédie, t. 1, 
1751, article Art) forestalled him. [B. B.] 
    11. J.-N. Nicollet (Enc. moderne, 1828 – 1830, article Assurance) expressed an 
opposite opinion. [B. B.] 
    12. This paragraph is unclear. In the literal sense the mean loss in case of constant 
insured values and risks is ∑mipi∑miai/m

2 which generally differs from ∑mipiai. On 
the other hand, in this case the amplitude of the fortuitous oscillations can be either 
larger or smaller depending on the values of pi and ai. For example, if ai = a and pi 
are variable, we have by formula (77.2), when denoting p = ∑mipi/m,  
 
    mp(1 – p)a2 ≥ ∑mipi(1− pi)ai

2 
 
and the amplitude of the oscillations is smaller than in the simple case considered in 
§ 182.  
    On the contrary, if pi = p and ai are variable, denoting p as above, we have by 
formula (77.2) the same inequality of the opposite sense. This occurs just because the 
function x(1 − x)y2 changes its concavity. 
    Cournot refers to § 82. It is possible that he hints at the two-stage pattern there, but  
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should be added in the square brackets of formula (187.1) which does not further 
clear the situation. 
    The same confusion is also present in the works of Poisson, Bienaymé and almost 
all statisticians of the 19th century. [B. B.] 
    13. As usual, this is an asymptotic equality by which the mean µ i is linear in the 
total loss µ: 
 
    E(µ i/µ) = Eµ i + [(µ − Eµ)/varµ]varµ i, 
 
µ  = ∑µ i and µ i for normal laws are independent. This remarkable Bienaymé formula 
apparently was not directly provided by Laplace or Gauss and seems to have little 
interested the organizers of mutual insurance. [B. B.]  
    14. There were no common factors and the transformation was not explained. O. S. 
    15. This was understood by Condorcet. Lacroix thought that the lack of realistic 
evaluations of risks was one of the most serious hindrances to the development of 
insurance. [B. B.] 
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    16. Note Laplace’s statement (1814/1995, p. 89): One may look upon a free people 
as a large association whose members mutually protect their property by 
proportionally supporting the costs of the protection. O. S.  
    17. Why should the capital been given back? 

 
Bibliography 

    Baily F. (1836 French), Doctrine of Life Annuities and Assurances Analytically 
Investigated. 1866. A later edition of the original English source. 
    Bienaymé I. J. (1839), Effets de l’intérêt composé. Soc. Philomat. Paris Extraits, 
ser. 5, pp. 60 – 65. L’Institut, 286, t. 7, pp. 208 – 209. 
    Cournot A. A. (1838 French), Researches into the Mathematical Principles of the 
Theory of Wealth. London, 1897. 
    Debouteville (1844), Recherches sur les sociétés de secours mutuels et de 
prévoyance. Paris. 
    Fourier J. B. J. (1819), Sur la théorie analytique des assurances. Annales de 
chimie et de physique, t. 10, pp. 177 – 189. 
    Hamon G. (1896), Histoire générale de l’assurance. Paris. 
    Heyde C. C., Seneta E. (1977), I. J. Bienaymé. New York. 
    Hubard G. (1852), De l’organisation des sociétés de prévoyance et de secours 
mutuels. Paris. 
    Lacroix S.-F. (1816), Traité élémentaire du calcul des probabilités. Paris, 1822, 
1833, 1864. 
    Laplace P. S. (1812), Théorie analytique des probabilités. Œuvr. Compl., t. 7. 
Paris, 1886. 
    --- (1814 French), Philosophical Essay on Probabilities. New York, 1995. 
Translated by A. I. Dale.  
    Pearson K., Editor (1914), Tables for Statisticians and Biometricians. Cambridge, 
1924, 1930. 
    Poisson S. –D. (1837), Recherches sur probabilité des jugements … Paris, 2003, 
2012. English translation: www.sheynin.de 
    Richard P.-J. (1956), Histoire des institutions d’assurance en France. Paris. 

 
 



 172 

Chapter 15. Theory of Probability of Judgements.  

Applications to Judicial Statistics of Civil cases
1
 

    192. It is obvious that the conditions of majority imposed on the 
decisions of judiciary personnel or a deliberating assembly should 
have a relation with the mathematical theory of chances. An accused2, 
knowing nothing about his judges, about their favourable or 
unfavourable disposition towards him, who is not informed about the 
procedures following investigation and pleadings, or about the manner 
in which the judges communicate with each other and collect their 
votes, − even he will not indifferently regard whether he is tried by a 
tribunal of three judges who condemn by a majority of two votes 
against one or by six judges who may only condemn by a majority of 
four votes against two. 
    It follows that the number of the judges and the established 
necessary majority are all by themselves arithmetical conditions 
independent from the judges’ qualities and personal disposition, 
always influencing a long series of decisions. They ought to prevail in 
the long run over variable circumstances concerning the composition 
of the tribunal in each particular case. A purely arithmetical problem is 
therefore present in the foundation of each law regulating the votes of 
tribunals. It essentially belongs to the theory of chances. However, 
calculations necessarily depend on certain observational material, on 
judiciary statistics which summarizes and coordinates sufficiently 
numerous facts so that the anomalies of chance will not appreciably 
influence the mean results. 
    A large country such as France3 governed by a strictly uniform 
legislation and a centralized administration finds itself in most 
favourable circumstances for collecting judiciary statistics. It was in 
France that the administration of justice initiated in 18254 the 
publication of the Comptes rendus. Someday it will become a source 
of a large number of documents precious for perfecting the legislation 
and studying the society from the viewpoint of morals and civic duties 
and responsibilities5. 
    193. When treating probabilities of judgements we always bear in 
mind the application of that theory [?] to civil and criminal cases, but it 
is not out of order to consider the word judgement in its widest sense 
both in ordinary and philosophical language and study in the most 
general manner the consequences following from associating the ideas 
of chance and judgement. 
    Such an investigation is interesting all by itself and will prepare us 
to understand better the special theory of judgements of the tribunals. 
For fixing the ideas by an example suppose that a man living in the 
countryside is always turning his attention to the state of the sky so as 
to forecast the next day weather by looking at the sunset. If he registers 
his forecasts or judgements, and in a large number m of them the event 
had been verified in n times, the fraction n/m = v will express the 
probability that a new forecast by the same observer will also be 
verified.  
    In other words, if he had not become either less or more able to 
forecast, we will note, when continuing to register his judgements, that 
the probability n1/m1 of verified forecasts is appreciably equal to n/m 
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for sufficiently large numbers m1 and n1. Suppose now that two people, 
A and B, independently make the same observations resulting in 
probabilities v1 and v2. If the causes (for example, depending on their 
physical and moral dispositions, on their health, degree of their 
attention) influencing the verity or error of their judgement are 
completely independent, then, evidently, 
    [1[ The probability that A and B agree either when forecasting 
correctly or mistakenly, is 
 
    p = v1v2 + (1 – v1) (1 – v2) = 1 − (v1 + v2) + 2v1v2.          (193.1) 
 
    [2] The probability of the contrary case is 
 
    q = v1(1 – v2) + v2(1 – v1) = (v1 + v2) − 2v1v2 = 1 − p. 
 
    [3] The probability that the forecasts in the first case were correct 
 
    V1 = v1v2/[v1v2 + (1 – v1) (1 – v2)]. 
 
    [4] The probability that A’s forecasts in the second case were 
correct 
 
    V2 = v1(1 – v2)/[v1(1 – v2) + v2(1 – v1)]. 
 
    These conclusions6 should be understood in an objective and 
absolute sense. They signify that when actually registering the 
forecasts of both A and B and comparing them with the future event 
for a large number N of simultaneous observations, we will 
approximately get for the first case 
 
    pN = [v1v2 + (1 – v1) (1 – v2)]N 
 
and V1N will be the number of verified forecasts, etc. The magnitudes 
v1 and v2 are determined by a previous series of observations as 
explained above [?]. 
    194. In our imagined example the verity or error of judgement of 
each observer can be confirmed by a faultless criterion, by observing 
the event. However, in many other cases similar criteria do not exist, 
their existence would have even contradicted the essence of the matter. 
For example, when a physician prescribes a treatment for his sick 
patient, no faultless criterion of the verity or error of his judgement can 
be elicited from the event. The patient can die although the prescribed 
treatment was really the best possible, or can recover in spite of its 
being wrong.  
    Suppose that two physicians are called to consult either jointly or 
separately on a long series of pathological cases and that it is 
impossible to determine directly the numbers v1 and v2 expressing the 
probabilities of their correct forecast or judgement. However, the 
register of the consultations will tell us how many times the physicians 
agreed, or not. If that series is sufficiently long, we will have an 
appreciably exact number p entering equation (193.1) and therefore the 
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equation between the numerical values of v1 and v2 which are 
impossible to assign by direct observations. 
    We should not forget that the existence of this latter equation is 
founded on the hypothesis that the anomalous causes tending to 
dispose the judgements of [physicians] A and B towards verity or error 
are independent from each other. We will first study the consequences 
of that hypothesis tacitly admitted by all those [Condorcet, Laplace, 
Lacroix, Poisson − B. B.] who had previously treated the probabilities 
of judgements. 
    195. We return to our first example about meteorological forecasts 
and suppose that there is a register of a series of them made by A, B 
and C. We retain the notation v1 and v2 and additionally introduce v3. It 
can happen that all three of them agree; that A, B, and C decided 
contrary to B and C, to A and C; and to A and B. Denote the four 
respective probabilities by p, a, b, and c. Then 
 
    p = 1 − (v1 + v2 + v3) +v1v2 + v1v3 + v2v3  
    a = v1(1 − v2 − v3) + v2v3 
    b = v2(1 − v1 − v3) + v1v3                                               (195.1a, b, c, d) 
    c = v3(1 − v1 − v2) + v1v2 
 
    Had the numbers v1, v2, v3, p, a, b, c been determined by direct 
observation of a long series of trials, they would appreciably satisfy 
equations (195.1). A deviation too large to be attributed to anomalies 
of chance7 will prove that the admitted hypothesis about the 
independence of the causes of error of each observer does not conform 
to reality. 
    On the contrary, when there does not exist a proper criterion [?] for 
directly determining the numbers v1, v2, v3, they can be found 
indirectly by means of the values of p, a, b, c given by observation and 
any three equations (195.1) since the four magnitudes are connected 
by an equation 
 
    p + a + b + c = 1. 
 
Because of symmetry it is convenient to have 
 
    v1 = 1/2 + z1, v2 = 1/2 + z2, v3 = 1/2 + z3,  
    a − 1/4 = α, b − 1/4 = β, c − 1/4 = γ 
 
so that  
 
    α = z2z3 − z1z2 − z1z3, β = z1z3 − z1z2 − z2z3,  
    γ = z1z2 − z1z3 − z2z3,                                      (195.2a) 
 
    z2z3 = − (β + γ)/2, z1z3 = − (α + γ)/2,  
    z1z2 = − (α + β)/2,                                          (195.2b) 
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    For v1, v2, v3 to be real, it is necessary that  
 
    a + b − 1/2, a + c − 1/2, b + c − 1/2                  (195.3) 
 
are negative, or that two of them are positive and one, negative. And 
for v1, v2, v3 to be contained within the interval 0, 1, it is necessary, as 
can be easily shown, that all the magnitudes (195.3) should be less 
than 1/2 in absolute value, a sufficient condition for which is a + b <1, 
a + c < 1, b +c < 1. 
    If these various conditions are not satisfied by the values of a, b, c 
as given by observations, the mentioned hypothesis should be rejected. 
The magnitudes v1, v2, v3 are double-valued since the radicals are; 
however, equations (195.2) do not allow to combine them indifferently. 
The remark about the signs of magnitudes (195.2) requires that all the 
three products  
 
    z1z2, z1z3, z2z3                                                    (195.4)  
 
should be positive, or two negative and one positive. 
    Suppose they are all positive, then z1, z2, z3 are of the same sign, 
positive or negative. If another hypothesis about the signs of 
magnitudes (195.3) or (195.4) is admitted, then either two hypotheses 
about the signs of z1, z2, z3, or two systems of values of the unknowns 
v1, v2, v3 will correspond to each of these magnitudes. 
    196. This analysis is naturally applicable to judgements in tribunals 
composed of three judges as they are in most French tribunals of the 
first instance. If the legal secretary may register the votes of each 
judge, his list summarizing a very large number of cases will provide 
the numbers a, b, c and the values of v1, v2, v3 can then be derived by 
the preceding formulas. 
    It is impossible to determine these values directly since the verity or 
propriety of a tribunal’s judgement can only be checked by another 
tribunal, also exposed to error however supposedly enlightened can its 
members be. Calculations indeed provide two systems of values for 
the numbers v1, v2, v3 but in most cases one of them is at once 
inadmissible which eliminates any ambiguity. For example, according 
to those systems each of the magnitudes v1, v2, v3 is either larger or 
smaller than 1/2, but it is repulsive to admit that each of the tribunal’s 
three judges is oftener mistaken than correct. It will mean taking 
seriously Rabelais’ jibe at the judge who decided his cases by 
throwing dice. The first system is therefore the only admissible. And 
calculations indirectly provide the values of v1, v2, v3 as surely as by 
direct observation provided we had a faultless criterion for checking 
such judgements. 
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    We should note that all these consequences rest on the hypothesis, 
whose righteousness is discussed below, on the independence of 
causes individually predisposing an error of each judge. This means 
that such an error is indifferently combined with an erroneous or 
proper decision of another judge. However, even before calculations 
the values of a, b, c often directly prove8 that that hypothesis is 
inadmissible since v1, v2, v3 become imaginary or negative, or exceed 
unity which can at least limit from above their veritable values, see 
below. 
    If it is possible to consider in advance that these three magnitudes 
are equal one to another or that the chances of error of each judge are 
the same, then, after rejecting the values of v < 1/2, equation (195.1a) 
will provide 
 

    1

1 1 4 1
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2 2 3

p
v

−
= +                                                         (196.1)  

 
    By that hypothesis it will suffice, as Laplace had remarked, to know 
the rate p of the unanimously decided cases. It will not be either 
difficult or inconvenient to determine that rate which should exceed 
1/4 for v1 not to become imaginary, not to signify that at least one of 
the admitted hypotheses (on the independence of the causes of error of 
each judge or on the equality of the chances of error, again of each 
judge) was inadmissible. However, although the second hypothesis is 
certainly arbitrary and in general wrong, it is easy to see that v1 in 
formula (196.1) appreciably expresses the mean of the veritable values 
of the three magnitudes v1, v2, v3, at least when the differences between 
them is not relatively very large. Suppose for example that they are 0.6, 
0.7 and 0.8. The mean is 0.7 and the corresponding value of p is 0.36. 
Substituting that value in (196.1) we find that v1 = 0.692, only by 
1/125 less than the veritable mean. 
    It is doubtless interesting to find out for each tribunal composed of 
permanent [irremovable] judges a value so close to the mean 
probability of verity or error of each of them. It is therefore desirable 
that the administration takes steps ensuring the knowledge for each 
such tribunal the rate of unanimous decisions reached during a decade. 
Purely formal decisions (conciliatory, by default etc) should certainly 
be excluded. 
    197. In addition, we should remark that formula (196.1) and all 
those supposing that the chances of error for all the voters are the same 
become applicable if the council or the tribunal is composed not of 
permanent judges, but of those chosen randomly from a long list. In 
such formulas, the letter v denotes the mean of the true values of that 
magnitude for each person entered there. So, if that list contains n1 
people having v1 as the value of v, n2 people having v2, … then v will 
be [the generalized arithmetic mean of v1, v2 , …]. 
    Actually, it is possible to imagine that the first judge chosen by 
chance deposits his vote in urn A, the second, in urn B, … Then these 
urns substitute judges A, B, … of a permanent tribunal. But then, that 
generalized mean will evidently express the probability of the 
propriety of the votes left in urn A as also in urns B, C, … if only the 
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number of people entered in their list is sufficiently large so that the 
removal of those chosen will not appreciably alter the value of the 
mean v. 
    198. The probability that a tribunal of three judges pronounces its 
judgement unanimously and correctly is v1v2v3; that it judges still 
properly but not unanimously is 
 
    (1 – v1)v2v3 + (1 – v2)v1v3 + (1 – v3)v1v2. 
 
Therefore, the probability of a correct judgement is 
 
    V = v1v2 + v1v3 + v2v3 − 2 v1v2v3.                                 (198.1) 
 
    In other words, the tribunal is a moral person for whom V represents 
that which for each of the judges A, B, C we denoted by letters v1, v2, 
v3. There should always be such relations between v1, v2, v3 that the 
value of V in (198.1) will exceed each of them. Indeed, if V is, for 
example, less than v1, it will be unreasonable to join judges B and C to 
A since this will only diminish the chance of a proper verdict. And, 
representing equation (198.1) in the form 
 
    V = v1(v2 + v3) − (2v1 − 1)v2v3, 
 
we see that necessarily V < v1 if v2 + v3 < 1, v1 > 1/2. However, in the 
most probable case in which each of the three numbers v1, v2, v3 are 
larger than 1/2, V necessarily exceeds the largest of them. 
    199. For indicating at least the general course of calculation, 
consider in addition the case in which the tribunal consists of four 
judges A, B, C, D having chances v1, v2, v3, v4 of deciding properly. 
Assume that their votes in a long series of judgements are established 
and denote by a the rate of judge A opposing all the others and by b, c 
and d the similar rates for the other judges. Then we will have 4 
equations for determining the 4 unknowns v1, v2, v3, v4  
 
    a = (1 − v1)v2v3v4 + v1(1 − v2)(1 − v3)(1 − v4) 
    b = (1 − v2)v1v3v4 + v2(1 − v1)(1 − v3)(1 − v4) 
    c = (1 − v3)v1v2v4 + v3(1 − v1)(1 − v2)(1 − v4) 
    d = (1 − v4)v1v2v3 + v4(1 − v1)(1 − v2)(1 − v3) 
 
    Let 
 
    v1 = 1/2 + z1, v2 = 1/2 + z2, v3 = 1/2 + z3, v4 = 1/2 + z4,  
    2a − 1/4 = α, 2b − 1/4 = β, 2c − 1/4 = γ, 2d − 1/4 = δ  
 
so that  
 
    α + β = 2(z3z4 − z1z2) − 8z1z2z3z4,                                   (199.1a) 
    γ + δ = 2(z1z2 − z3z4) − 8z1z2z3z4                                                       (199.1b) 
 
    Therefore 
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    8z1z2 = (γ + δ) − (α + β) ± 2[(α β) (γ δ)] 4(α β γ δ),+ − + − + + +  

    8z3z4 = (α + β) − (γ + δ) ± 2[(α β) (γ δ)] 4(α β γ δ)+ − + − + + +   

 
and the products 8z1z3, 8z2z4, 8z1z4, 8z2z3 are obtained similarly. Each 
of them is double-valued because the radicals are. However, equations 
(199.1) can only be satisfied when choosing the same radical with the 
same sign for z1z2 and z3z4. At the same time there will only be two 
systems of values, positive or negative, for each of the groups (z1z3 and 
z2z4) and (z1z4 and z2z3). Then,  
 

    1 2 1 3 1 2 1 4 1 3 1 4
1

2 3 2 4 3 4

z z z z z z z z z z z z
z

z z z z z z
= ± = ± = ±   

 
with the other three unknowns z2, z3, z4 being expressed similarly.  
    Considering the cases in which A and B are of the same opinion and 
oppose C and D; A and C oppose B and D; A and D oppose B and C; 
and when all four are of the same opinion, we will have 4 other 
equations from which the values of v1, v2, v3, v4, can be determined. If 
they do not agree with those derived from the values of a, b, c, d, we 
will reject the hypothesis about the independence of the causes of error 
of each judge.  
    200. For avoiding an equal separation of votes and the necessity of 
attributing a preponderant vote to one of the judges, or of inviting 
other judges for removing the impasse, tribunals are usually composed 
of an odd number of judges. Denote by Vm the probability of a proper 
judgement for a tribunal composed of (2m + 1) judges having the same 
chance v of faultlessness. Then9 
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    Had this probability been known, the value of v would be found by 
solving that equation of (2m + 1)-st degree. The hypothesis on which it 
rests, the equality of the values of v for each judge, is in general 
certainly inadmissible. However, that formula is nevertheless 
applicable, as explained in § 197, if the tribunal is composed of judges 
chosen by chance from a long list.  
    For determining v in a similar case when Vm is not known, the 
simplest procedure is to determine by experience the rate q of majority 
judgements. We will have 
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    If the tribunal is composed of an even number 2m of voters, and if q 
is the rate of an equal separation of votes, then 
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The expansion of the binomial (§ 5) is symmetric and it is easy to see10 
that the probability of a proper decision by a majority of i votes is 
 
    vi/[ vi + (1 – v)i] 
 
so that it is the same as though the decision was reached unanimously 
by a tribunal only composed of i judges for whom the chance of proper 
voting is v. In other words the probability of a proper vote depends not 
on the absolute number of votes but on the difference between the 
positive and negative votes.  
    Imagine therefore two tribunals the second of which is composed of 
a lesser number of judges and admit as previously that the probability 
v of a proper individual decision is the same for both. If each tribunal 
has judged a very large number of cases from which N1 and N2 cases 
respectively were decided by a majority of i votes, then, in general,  
N2 < N1, but the ratios of proper to mistaken judgements will be 
appreciably the same.  
    201. If a large number of the same cases are successively tried in 
many tribunals we can calculate the probability of a proper decision 
for each court just as that probability for the different judges of a 
tribunal by the concordance and discordance of the votes in a long 
series of cases. It seems that the institution of appeals and the 
publication of judiciary statistics in such a country as France should 
lead to the determination of V and therefore of the mean value of v. 
However, many important remarks ought to be made. 
    First of all, a process, and especially a civil process, often presents 
complicated problems and is transformed during different phases of 
the procedure. The factual or legal essence of a case submitted to the 
judges of an appeal court can considerably differ from the subject 
decided in the court of first instance and the appellant can win his case 
without the judgement in the appeal court being a reversal in the 
proper sense of that of the court of first instance. 
    It is different with regard to cassation complaints since the plaintiff 
can only refer to the legal aspects of the contested sentence. However, 
on the other hand, if the cassation indicates that the appeal court 
judged mistakenly (or at least contrary to the doctrine of the cassation 
court) concerning a point of the complex problem submitted to it, a 
rejection of a complaint, as is known to all those for whom the 
principles of our French legal system is not alien, does not indicate 
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either that the appeal court decided properly or that the cassation court 
had in essence approved the former’s sentence. 
    If wishing to eliminate the first consideration, against which in any 
case neither the judiciary statistics nor the combinatorial analysis can 
do anything, it should be remembered that the appeals only concern a 
minority of cases decided in courts of first instance. The method under 
discussion can in any case only determine the magnitude V for the 
cases appealed against the decisions of the tribunals of first instance. 
In reality, had the appeals only been determined by the plaintiff’s 
whim, that magnitude would be the same whether the cases were 
appealed or not. It is the same if the decision to appeal or not also 
depends on the pecuniary importance of the process. Indeed, it is 
natural to suppose that a process of little pecuniary importance 
presents the same difficulties as one of great importance of that kind 
and that conscientious magistrates take the same care to resolve them 
according to the principles of equity and law.  
    However, we should also admit that, after losing his case, the 
plaintiff often acquiesces in believing that his case is weak and we find 
that there are considerably more properly decided processes in courts 
of first instance than among those sent to judges of the courts of 
second instance. 
    The personnel of tribunals are renewed in time, legislation varies, 
the law consolidates in some respects and new controversial problems 
appear so that the magnitudes V and v should vary in time. For 
covering only one period during which they remain appreciably 
invariable but nevertheless collecting a sufficient number of decisions 
we should not restrict our study to a small number of tribunals of first 
instance or appeal courts. We ought to, for example, apply the yearly 
data of the public administration for France in its entirety.  
    This is tantamount to supposing that there is only one French court 
of first instance and one appeal court. […] If tribunal i whose chance 
of a proper decision is Vi considers mi yearly appeals, the required 
magnitude V for a fictitious court of first instance will be  
 
    V= (m1V1 + m2V2 + …)/( m1 + m1 + …). 
 
For a fictitious appeal court similarly V, mi and Vi are replaced 
respectively by V′, mi′ and Vi′.  
    202. According to the law of 16 Aug. 1790, the district tribunals had 
at the same time been reciprocal appeal courts. The constitution of 
year III maintained the same system but left only one tribunal for each 
department and magnitudes V and V′ became equal to each other. 
Denote by q the rate of reversed appeals, then 
 

    q = 2V − 2V2, V = 
1 1

.
2 4 2

q
± −   

 
    Nothing would have been easier than to determine the mean V for 
that period had the judiciary statistics then, during the time of civil 
disorder and considerable perturbations even in the ordinary courts, 
been organized. 
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    A more complicated system although similar to a certain point is 
still governing in France with regard to appealing the decisions of 
police courts. In those departments where there are no Royal courts, 
decisions of such kind reached at courts of first instance by circuit 
tribunals are appealed to the tribunal of five judges of the main city of 
the department. Decisions reached by courts of first instance by the 
tribunal of three judges of the main city are appealed, depending on 
the distances, either to the tribunal of a neighbouring main city or to 
the Royal court which indifferently receives appeals against the 
tribunals of the police courts of the same department. The very 
complication of that system provides the necessary materials for 
determining magnitudes v and V with a very good approximation, but 
we will not enter here into details11. 
    203. In civil matters, denoting by V the mean value of the chance of 
a proper decision for the kingdom’s tribunals of the first instance and 
for the appealed cases; by V′; the same mean chance for the Royal 
courts; and by q, the rate of the reversed appeals , we will have 
 
    q = V + V′ − 2VV′.                                                      (203.1) 
 
This equation is not, however, sufficient for determining V and V′ 
separately and the same uncertainty occurs with respect to the appeals 
against sentences reached by justices of the peace and sent to the 
district tribunals. 
    That uncertainty can only be eliminated by a hypothesis. At first, 
following Poisson, we suppose that the mean chance v is the same for 
judges of the courts of first instance and appeal courts. We will also 
admit that all the decisions at those former courts are reached by 3 
judges and by 7 at the latter courts. These are actually the minimal 
numbers stipulated by law, and they are rarely exceeded. This double 
assumption leads to 
 
    V = v3 + 2v2(1 – v),                                                    (203.2a) 
    V′ = v7 + 7v6(1 – v) + 21v5(1 – v)2 + 35 v4(1 – v)3.     (203.2b) 
 
    By issuing from the Comptes généraux of the administration of 
French civil justice, from the beginning of the judicial year 1830/31 to 
the end of the civil year 1840, we compiled the following table. 
[Cournot provides a table showing years, number of judgements, both 
confirmed and reversed; reversed wholly or partly, total numbers 
85,161 and 27,141; and the rate q, mean value 0.3187.] 
    In this table, the appeals against the decisions of commercial 
tribunals and the judgements of the civil tribunals of first instance 
composed of permanent magistrates are combined. Their separation 
testifies about the remarkable fact that the value of q is appreciably the 
same in both. It is as though the advantages of the civil judges caused 
by the permanence of their jobs and their professional studies are 
almost exactly compensated by a fair appreciation achieved by the 
knowledge of commercial deals performed by eminent merchants 
temporarily empowered to solve disputes occurring in such cases12. 
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    Substitute 0.3187 instead of q in equation (203.1), then this equation 
and equations (203.2) will provide13 
 
    v = 0.686, V = 0.766, V′ = 0.855. 
 
The mean probability of a proper decision of a Royal court will be 
0.950 in cases of confirmed appeals and only 0.642 in the opposite 
cases14. 
    204. However, the hypothesis on which these values are based is 
evidently very unfavourable for the Royal courts in that their 
superiority over tribunals of first instance only depends on the larger 
number of their judges. The hierarchal constitution of the judiciary 
corps must nevertheless concentrate more experience and 
enlightenment in superior tribunals and other statistical documents 
wholly confirm this opinion and determine the limits within which the 
values of v and V ought to be contained.  
    These documents consist of the lists of reversed complaints 
[concerning various types of courts] as indicated in the following table. 
    [Cournot provides a table showing the number of reversed 
complaints about the decisions of the Royal courts and other superior 
tribunals and, separately, of civil and commercial tribunals for the 
years 1830/31 − 1840.] 
    It follows that the ratio of the cassations to the number of 
complaints about the decisions of the Royal courts concerning civil 
and commercial cases is 0.202; and the ratio of complaints about the 
judgements of the tribunals of first instance or commercial tribunals on 
which appeals are not allowed is 0.467. The first ratio can be 
considered quite exact; on the contrary, the value of the second can 
only be accepted for the time being. 
    Denote as previously by V and V′ the mean values of the chances of 
proper decisions by the tribunals of first instance and Royal courts; by 
V″, the similar chance for the cassation court; by q″ and q′, the ratios 
whose numerical values were given above. Then 
 
    q′ = V + V″ − 2VV″, q″ = V′ + V″ − 2V′V″              (204.1a, b) 
 
and after eliminating V″ 
 
    V(1− 2q″) − V′(1−2q′) = q′ − q″. 
 
    Suffice it to combine this with equation (203.1) for separately 
determining V and V′ independently from the hypothesis of § 203 if 
only admitting that these values are the same for the series of cases 
appealed to the Royal courts and cassations. However, calculations 
provide imaginary values for V and V′ and it suffices to be a bit 
familiar with the principles of our judiciary organization for presuming 
in advance that that hypothesis is inadmissible: the delicate problems 
most often causing requests for cassation should be expounded to the 
tribunals of first instance and the Royal courts whereas in the mean the 
chances of error are greater for the latter than in cases which are only 
appealed. 
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    205. After successively substituting V″ = 1 and V″ = V in equation 
(204.1a) we obtain two values of V, one of them certainly smaller, and 
the other certainly larger than its true value. Indeed, the cassation court 
can itself be mistaken and it sometimes reforms its own practice. On 
the other hand, it is absurd to suppose that V″ < V. We conclude, after 
assuming that q″ = 0.467, that 
 
    0.533 < V < 0.630.                                                              (205.1) 
 
    The same reasoning applied to equation (204.1b) leads to 
 
    0.798 < V′ < 0.866.                                                             (205.2) 
 
However, in virtue of that equation V″ increases when V′ decreases so 
that V″ > 0.886 and we obtain a superior limit for V when inserting V″ 
= 0.886 in equation (204.1a). Indeed, there is no reason to suppose that 
in a series of complaints against the decisions of the tribunals of first 
instance V″ can decrease lower than the limit not passed in a series of 
complaints against the decisions of Royal courts.  
    Inequalities (205.1) should therefore be replaced by 
 
    0.533 < V < 0.543 
 
to which correspond inequalities 
 
    0.520 < v < 0.528. 
 
    We see that this assumption narrows the unknown values of V and v 
relative to a series of appealed cases. The residual uncertainty is less 
than that caused by the incertitude of the statistical materials 
themselves. 
    Inequalities 
 
    0.649 < v′ < 0.710 
 
correspond to inequalities (205.2). Here, v′ denotes for the judges of 
the Royal courts the same as v denotes for the judges of the courts of 
first instance, and it can be thought that the true values [?] are nearer to 
the inferior rather than to the superior limits. 
    For a series of appealed cases the value of the ratio V′/V should be 
less than for those which led to requests for retrials. On the one hand, 
they do not in general present such difficulties, and the more 
difficulties there are, the more should be felt the enlightenment of the 
judges of the appeal courts. On the other hand, for the interested side 
the causes for resorting to requests for cassation, when cases are 
unimportant, as those ordinarily finally decided by inferior tribunals 
are, should seem very serious.  
    In a series of requests, when taking the inferior limits of V and V′, 
which can not differ much, we will appreciably have V′ = 3V/2. 
Together with equation (203.1) we will have 
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    V = 0.668, v = 0.614 
 
and V′ will be appreciably equal to unity. And so, for a series of 
appealed cases we will certainly assume that 
 
    0.668 < V < 0.766, 0.614 < v < 0.686.  
 
    We should also be on our guard against confounding, just as I 
remarked in § 201, the values of V and v for the appealed cases or 
those under cassation, with cases which are in general tried by courts 
of first instance. 
 

Notes 
    1. This chapter and the next one are essentially a reprint of Cournot (1838). [B. B.] 
Explanation. Courts of appeal, appeals or appellate courts review decisions reached 
by lower courts. In turn, their own decisions (as the decisions of lower courts) can be 
reviewed by courts of cassation which only verify the correctness of the 
interpretation of the law. O. S. 
    2. Since mentioning an accused, Cournot began discussing criminal cases which 
was contrary to the title of the chapter. O. S. 
    3. Cournot (1838) referred here to the previous work of Condorcet and Poisson. At 
the time of Condorcet and Laplace, as he stated, there was no judiciary statistics and 
they had to introduce arbitrary hypotheses. [B. B.] 
    4. Actually, the first volume of the Comptes généraux for the judiciary year 1825 
appeared in 1827. [B. B.] 
    5. Cournot (1838) stated that he had postponed its publication to read Poisson’s 
forthcoming book (1837) about which that illustrious author had informed him in 
quelques commucations. [B. B.] 
    6. The formulas above are due to Condorcet; then they appeared in the works of 
Lacroix and Poisson. [B. B.] 
    7. The expression anomalies of chance is due to Laplace (1814/1995, p. 43). [B. 
B.] 
    8. Boole (1854, Chapter 18, No. 4 and Chapter 21, No. 5) criticized that test. [B. 
B.] 
    9. That formula is due to Condorcet. [B. B.] 
    10. Same comment. [B. B.] 
    11. Concerning the other developments which can not be included either here or in 
the next chapter, see my paper (1838). A. A. C.  
    12. In our opinion, that point is one of the most curious occurring in the Comptes 
généraux and it is desirable to justify it in more detail. To achieve this, we (1838) 
distinguished more clearly than in the official reports the appeals against two 
jurisdictions, as shown in the table. 
    [Cournot provides a table showing the appeals against decisions of civil and 
commercial tribunals, see previous table, for 1830/31 − 1834.] 
    In 1840, for the first time, the appeals were thoroughly distinguished not only by 
those two jurisdictions, but in addition against civil tribunals with respect to civil 
cases proper and commercial judgements in towns where there were no commercial 
tribunals. The results are shown in the following table […]. A. A. C. 
    13. Poisson (1837, § 151) derived v = 0.6832 and V = 0.7626. [B. B.] 
    14. Poisson (Ibidem) derived, respectively, 0.9479 and 0.6409. [B. B.] 
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Chapter 16. The Theory of Probability of Judgements Continued. 

Applications to Judicial Statistics of Criminal Cases.  

Probability of Testimonies 

[16.1. Applications to Judicial Statistics of Criminal Cases] 
    206. In the preceding chapter, we issued from a hypothesis that the 
causes of error of each judge are independent so that the cases in 
which judge A decided properly or mistakenly were indifferently 
combined with those concerning judges B, C, … It was as though each 
face of a die indifferently combined with each face of another die. This 
is only true with regard to causes of errors which occur because of 
circumstances dominating each judge individually, such as the state of 
his physical and moral health, the degree of the encouragement of his 
attention, the habits of his mind, individual prejudices, etc.  
    However, there exist other causes of error which at the same time 
influence all those who become acquainted with the case so that the 
error of judge A more easily or oftener combines with the error of 
judges B, C, … than with the contrary event. I return to my initial 
example (§ 193) and suppose that two observers of the same degree of 
perspicacity and experience simultaneously register their 
meteorological predictions. Denote by v the rate of successful 
predictions for each of them and by p, the ratio of the number of 
observations leading to coinciding predictions to the total number of 
observations. In virtue of equation (193.1) we will have 
 

    p = 1 − 2v + 2v2, 
1

2 1.
2

v p= ± −                                     (206.1) 

 
    The register of predictions after being compared with the register of 
subsequent observations will determine the numbers v and p so that, if 
the causes of error of those observers are independent, the relation 
between them will be expressed by equation (206.1).  
    Suppose now that we separate the series of predictions in many 
categories by months or by distinguishing predictions of fine and rainy 
weather, etc. Each category should be quite numerous1 for a 
sufficiently exact determination of the ratios v and p. Denote by p1, p2, 
…, pn and v1, v2, …, vn the values of those ratios for the different 
categories and by ki the ratio of the number of observations in category 
i to the total number of them, so that 
 
    k1 + k2 + … + kn = 1.                                                        (206.2) 
 
    The veritable value of v will be 
 
    k1v1 + k2v2 + … + knvn. 
 
Assume now that in each category the causes of the observers’ errors 
are independent, then strictly for each of them 
 

    1 1 2 2

1 1
[ 2 1 2 1 ... 2 1]

2 2 n nv k p k p k p= + − + − + + −      (206.3) 
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so that the influence of causes inclining both observers to err 
simultaneously is eliminated. 
    For simplifying the reasoning we suppose that each number v1, v2, 
…, vn exceeds 1/2 and that all radicals are taken with a positive sign. A 
contrary hypothesis will be examined later. If categories were not 
separated or if this was impossible to achieve, and if we admit that the 
causes of error for the general series were independent, then equation 
(206.1) will lead to 
 

    1 1 2 2

1 1
2( ... ) 1

2 2 n nv k p k p k p= + + + + −  

 
and it is easy to prove (§ 77) that this approximate value of v always 
exceeds its true value (206.3). 
    207. Suppose that a direct determination of v is possible. Before any 
classification of judgements by categories we should warn against an 
error of the hypothesis about the independence of the causes of error 
for each judge. The value of v derived from equation (206.1) will 
exceed that provided by direct determination and the difference 
between these values can still increase if the value of v for certain 
categories can fall lower than 1/2 with its being nevertheless larger 
than 1/2 for the general series. 
    On the contrary, in the ordinary case in which the value of the 
number v can only be known indirectly by means of equation (206.1) 
or similar to it, nothing will warn the calculator about the mistake of 
his hypothesis if the general series of judgements is not sufficiently 
numerous2 for allowing to subdivide it by issuing from statistical 
documents into partial series quite numerous for the ratios to be 
appreciably permanent.  
    When such a classification is possible, it occurs in general that the 
ratio p varies from one category to another and becomes, in succession, 
p1, p2, …, pn. And then the value of v can be calculated by equation 
(206.3). That second value, always smaller than the first one, will still 
exceed the true value if for each category or for some of them the 
hypothesis about the independence of the causes of errors is not yet 
appreciably true. When statistics will be enriched by a larger number 
of observations the number of categories could be multiplied for 
obtaining a value of v smaller than the preceding and closer to the true 
value.  
    208. For simplifying calculations suppose that 
 

    1 1 2 2

1 1 1
2 1 ,  2 1 ,  2 1 ,...

2 2 2
p z p z p z− = − = − =  

 
    k1z1 + k2z2 + … = ς 
 
so that the values of v derived from equations (206.1) and (206.3) will 
be respectively 
 
    v = 1/2 + z, v = 1/2 + ς. 
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Then  
 
    z2 − ς2 = k1k2(z1 − z2)

2 + k1k3(z1 − z3)
2 + … + k2k3(z2 − z3)

2 + … 
 
    Nevertheless, we can prove (Note 5 to Chapter 6) that if the 
numbers k1, k2 … are to remain positive and satisfy equation (206.2), 
and if, on the other hand, a and b (a < b) denote the limits of z1, z2, … 
the value of the right side of the preceding equation will be contained 
between 0 and (b − a)2/4. 
    In addition, the numbers p1, p2, … are necessarily contained 
between 1/2 and 1 so that a = 0, b = 1/2 and 
 

    z2 − ς2 < 1/16, ς > 2 1/16.z −   
 
If, for example, the general series applied without distinguishing 
categories provides v = 0.9 or z = 0.4, the veritable value of v (obtained 
were it possible to multiply the categories until no other causes of error 
are left except the influence of those varying from one judge to 
another) will be necessarily contained between 0.9 and 
 

    1/2 0.16 1/16+ − =  0.81225. 
 
    This formula relative to the inferior limit of v will become illusory 
and useless when z < 1/4 or only a bit exceeds that fraction. In such a 
case we can only wait for the improvement of the exact statistical 
value of the ratio v. When this value remains stationary even if the 
increased number of observations permits to multiply the number of 
categories, we will be assured that the limit is attained, that in each 
category the causes of error can be thought to act irregularly and 
variably for each judge or observer. 
    209. Consider now a tribunal of three judges for each of whom we 
are justified to attribute the same value v. The judges are permanent 
and equally enlightened or randomly selected from a general list for 
each case with v (§ 197) then being the mean of the appropriate values 
for each individual included in that list. Denote by p the rate of 
unanimous decisions determined from a long succession of 
observations, then 
 

    
1 1 4 1

.
2 2 3

p
v

−
= ±                                                         (196.1) 

 
    The form of this expression [of this function] is the same as of 
(206.1) and we can apply here all the previous considerations about the 
successive lowering of the value of v with the multiplication of the 
categories and about the limits of this decrease.  
    The probability or the rate of a proper decision is 
 
    V = 3v2 − 2v3 
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if all decisions can be included in a single series. Suppose now that 
that series is separated in two categories with v taking values v1 and v2 
so that the rate of proper judgement will be  
 
    k1V1 + k2V2 = 3(k1v

2
1 + k2v

2
2) − 2(k1v

3
1 + k2v

3
2) 

 
and we ought to prove that it is smaller than V, 
 
    k1V1 + k2V2 < V,                                                                 (209.1) 
 
at least when v, v1, v2 > 1/2. 
    In this case the ratio p for the general series is the mean of p1 and p2 
and v is contained between v1 and v2 so that we can suppose that 
 
    v2 < v < v1.                                                                         (209.2)  
 
On the other hand, as proved above, 
 
    k1v1 + k2v2 < v, k1 < (v − v2)/(v1 − v2).                              (209.3) 
 
    If the inequality (209.1) is not satisfied, and if, on the contrary, 
 
    k1V1 + k2V2 > V, k1(V1 − V2) > (V − V2), 
 
we can conclude that k1 > (V − V2)/(V1 − V2) and, because of 
inequality (209.3) 
 
    (v − v1)(V1 − V2) > (v1 − v2)(V − V2)                               (209.4) 
 
since V increases with v and inequalities (209.2) lead to 
 
    (V1 − V2) > 0, (V − V2) > 0. 
 
    Without changing the sense of the inequalities we can multiply or 
divide [them] by (V1 − V2) and (V − V2). After substituting the values 
of V, V1 and V2 inequality (209.4) is reduced to 
 
    (v1 − v)(v1 − v2)(v − v2)[3 − 2(v + v1 + v2)] > 0. 
 
However, v, v1, v2 > 1/2 as assumed above, and the factor in square 
brackets is negative whereas all three binomials are positive in virtue 
of (209.2). Therefore, the preceding inequality can not be valid and 
finally inequality (209.1) is verified if the infinitely low probable case 
in which both its sides coincide is excluded.  
    It follows that when categories are multiplied, the value of the 
chance of proper judgement of a tribunal provided by calculation 
lowers just as does the value assigned for the mean chance of proper 
decision for each judge. 
    210. Until now, we supposed that the numbers k1, k2, … are known 
and directly provided by statistical documents. They can be called the 
coefficients of the categories expressing the probabilities that a 
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judgement chosen randomly from the general series belongs to 
categories 1, 2, … However, we can also suppose that these numbers 
are unknown  and propose to determine them by a sufficient number of 
elements chosen from those directly provided by observation. On 
solving such a problem depends the application of the theory of 
chances to judiciary statistics in criminal cases.  
    Actually, a series of accused brought before a criminal tribunal is 
naturally separated in two categories, guilty and innocent with k1 and 
k2 denoting the probabilities that a person randomly chosen from the 
general list of the accused belongs to the respective category. Numbers 
k1 and k2 whose sum is unity are not, and can not be given directly 
because we never have a pertinent faultless criterion. 
    It is only quite likely that, taking into account our morality and our 
judiciary institutions, k1 considerably exceeds k2. The accused only 
appear before a tribunal after preliminary investigation which excludes 
those against whom there are no really serious charges.  
    The chance v of a proper decision by each of the tribunal’s judges is 
k1v1 + k2v2 where v1 and v2 are the values of that chance for the series 
of guilty and innocent accused. We can believe that in general these 
numbers are not equal at all, or, in other words, that the ratio of the 
condemned guilty accused to the acquitted guilty is not equal to the 
ratio of the acquitted innocent accused to the condemned innocent. In 
any case, an equality of v1 and v2 can only be established by 
experience. In general we have three unknowns, k1, v1 and v2 to be 
determined by observations. 
    211. Once more we consider a tribunal of 3 judges and we are 
justified to attribute to each of them the same values of v1 and v2. For 
the time being assume also that the judge who condemns or acquits an 
accused asserts by that same act that the accused is guilty or innocent 
respectively. Denote by c1 the ratio of the number of unanimously 
condemned accused to the whole number of the accused, by c2 the 
same ratio for those condemned by a majority verdict, and finally by a 
the ratio of the unanimously acquitted accused to the total number of 
the accused. Then we will have three equations in three unknowns, k1, 
v1 and v2: 
 
    k1v1

3 + (1 − k1)(1 − v2)
3 = c1                                                                          (211.1a) 

    3k1v1
2(1 − v1) + 3(1 − k1)v2(1 − v2)

2 = c2                                             (211.1b) 
    k1(1 − v1)

3 + (1 − k1) v2
3 = a                                                 (211.1c) 

 
    212. It is reasonably indicated that a judge who acquits an accused 
ordinarily does not at all mean that the accused is innocent, but that in 
his eyes the indicators of guilt are not sufficient for determining a 
conviction. Inversely, a judge condemning an accused does not at all 
affirm with absolute certitude that the accused is guilty, but only then 
there exist such indications, such a strong presumption of guilt that he 
can not acquit the accused against whom such indications and strong 
presumptions are levelled without paralyzing the action of justice and 
compromising public security.  
    Those criticisms lead to the numbers k1, v1 and v2 determined by the 
previous equations being relative not at all to guilty and innocent 
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accused, but to two other categories, convictable and not convictable 
or absolvable accused. The first can, strictly speaking, include 
innocent accused, and the second, quite likely, many really convictable. 
On the other hand, if the mind clearly and at once comprehends the 
absolute distinction between the guilty and innocent accused, how nice 
it would also be to form easily a precise idea about a categorical 
separation of the accused into convictable and absolvable. This is the 
most delicate point of the theory, delicate as it is, and we ought to turn 
extreme attention to it. 
    On this point we ask permission to return once more to the fictitious 
example. If someone engaged in meteorological predictions predicts 
fine weather for tomorrow, he does not surely affirm his statement in 
an absolute manner but only believes that the chances of such weather 
are very good, good enough, let us say, for not hesitating to undertake 
a voyage or climb a mountain.  
    Just the same, a surgeon who believes that an amputation of an 
injured limb is necessary does not state that another choice is 
absolutely impossible. He only affirms that otherwise the chances of 
death are in his opinion sufficiently high for sacrificing the affected 
limb. The same remark is applicable to most of human judgements and 
there is nothing special about judgements in criminal cases.  
    213. And so, for returning to our subject which demanded that 
digression let us imagine that the accused are separated into a 
sufficiently large number of categories containing the guilty and the 
innocent so that in each the causes of error act fortuitously and 
independently on each judge. Suppose that in each category the value 
of the ratio v can not decrease lower than 1/2 either for the guilty or for 
the innocent. Then equations (211.1) applied to each category will 
determine the numbers k1, v1 and v2 according to the distinction just 
mentioned. Calculation will provide double values of v1 and v2, 
1/2 ± z1 and 1/2 ± z2, and the positive sign should always be chosen. 
    According to the theory elucidated above, the same equations when 
applied to the general series of the accused will certainly only provide 
approximate values of the required ratios but that approximation will 
always concern the classification of the accused into guilty and 
innocent. On the contrary, we should admit that for numerous 
categories of the accused the chance v of a vote conforming to reality 
drops lower than 1/2 and even indefinitely approaches zero.  
    There are doubtless many guilty accused who will almost certainly 
be acquitted either because of the weakness of the legal charges 
levelled against them or due to various causes (such as the excessive 
harshness of the penal law) which predispose most judges to 
indulgence3. We can not at all refuse to admit that a very small number 
of innocent accused will almost certainly be convicted because, owing 
to a fatal coincidence of circumstances, charges were heavy and 
compelled even the most enlightened and impartial judges to convict 
them. As a consequence, there are accused for whom, when classifying 
them as innocent and guilty and applying equations (211.1), it is 
necessary to choose for v1 and even for v2 their calculated values 
which are less then 1/2.  
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    Therefore, those equations should not be applied to the general 
series of accused even for obtaining a first approximation or at least, 
when having a good reason for doubt, perhaps choose the lesser 
calculated value v1 as being nearer to its true value. There is only one 
way to get over this difficulty and include the second case into the first 
one, viz, to consider absolvable those guilty accused for whom the 
chance of conviction is smaller than 1/2 and at the same time regard as 
convictable those innocent accused (actually and happily there being a 
very small number of them) for whom that chance is larger than 1/2.  
    Then, when changing the initial sense of the letters v1 and v2 and 
assuming that v1 is the chance of convicting convictable accused and 
v2, the chance of absolving absolvable accused, for no category of the 
accused these numbers by their very definition will be smaller than 1/2. 
And if equations (211.1) are applied to the general series of the 
accused as a first approximation, it will be necessary to choose those 
of the calculated values for v1 and v2 which exceed 1/2.  
    214. These explanations are useful in that they provide a precise 
mathematical definition of the sense attached to the words convictable 
and absolvable. They allow seeing clearly how the pertinent 
classification of the accused is connected with the state of the 
enlightenment and moral disposition of the stratum of citizens from 
whose midst jurymen and judges are chosen. It follows that if the 
judges belong to another stratum, or even to the same stratum as the 
accused, but are influenced otherwise, the accused can pass over from 
being convictable to absolvable or vice versa.  
    And so, the rate of conviction in Belgium amounting to 0.83 when 
crimes had been heard by magistrates fell to 0.60 after the French 
system of jurisprudence was re-established there. It follows, as Poisson 
had remarked, that the proportion of convictable accused (in our sense) 
sharply declined because of that change although the form of 
preliminary investigation remained as it was previously, so that the 
proportion of the really guilty accused did not considerably vary. 
Actually, jurymen are more inclined towards indulgence than 
permanent magistrates, and there are many categories of the guilty 
accused for whom the chance of conviction was higher than 1/2 under 
the previous system but became lower than that value when the vote 
was transferred to the jurymen. Those accused are considered 
convictable when formulas (211.1) or similar are applied with the vote 
carried out by permanent magistrates but they pass over to the 
absolvable when the same formulas are applied with the vote being 
granted to the jurymen.  
    This theory also allows us to foresee in what sense the results of 
calculation will be modified depending on the essence of the variations 
of criminal legislation or other circumstances influencing the votes of 
the jurymen. All that tends to heighten their enlightenment should 
increase the values of v1 and v2. Therefore, all things being equal, we 
find lesser v1 and v2 for jurymen voting without communication 
between themselves than for those who deliberate jointly and can more 
clearly grasp the situation4. On the contrary, a softening of penal 
legislation leading to a greater number of deserved convictions and 
therefore to a more efficient suppression of certain offences should be 
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regarded as an incontestable improvement but it can lower the values 
of v1 and v2 as related to the classification of the accused into 
convictable and absolvable.  
    There had existed a category of guilty accused almost sure to be 
acquitted for which v2 had a very large value, but the cause of the 
pertinent constant error which almost certainly determined the 
acquittal, was excluded and the fate of those accused became 
influenced by the causes of error acting irregularly and independently 
on each juryman. For those accused the chance v2 decreased; if it fell 
below 1/2, they passed over to the convictable for whom v1 could 
nevertheless have a value a bit higher than 1/2. These mean values of 
v1 and v2 for the general series of the accused can thus lower after the 
softening of the penal legislation although the number of proper 
judgements increases. 
    In general, ignorance is a cause of error acting irregularly and 
variably from one juryman to another. All that tends to heighten their 
enlightenment inclines to diminish the risky part in their verdicts and 
to increase the proportion of unanimous verdicts or those carried by a 
strong majority, and therefore to increase the calculated values of v1 
and v2. On the contrary, the elimination of the causes of error 
following from dominant prejudices and natural dispositions of the 
human heart while increasing the number of proper judgements can 
also increase the role of chance, diminish the proportion of verdicts 
carried unanimously or by a strong majority and therefore decrease the 
calculated values of v1 and v2. 
    215. If the judicial statistics provides for our correctional tribunals 
composed in general of three judges the values of the elements c1, c2 
and a, equations (211.1) can be applied for determining the ratios k1, v1 
and v2. Those elements are not however given and, according to our 
laws, can not be given. On the contrary, the judicial statistics provides 
all necessary documents concerning the appeals against correctional 
police and those ratios can be determined for the accused brought 
before the two degrees of jurisdiction. We can not enter into all the 
necessary details about this curious application and refer to our 
memoir (1838) already cited in § 202. 
    216. The most interesting application of the theory of probability of 
judgements is that whose subject is the decisions pronounced by our 
jurymen in criminal cases. A tradition that goes back to the Middle 
Ages established the jury panel of 12 members, just like in England. 
Otherwise, however, the jury system in those two countries rests on 
very different foundations.  
    In French legislation, the established majority for pronouncing a 
convictive verdict had varied many times. According to the present 
law, a simple majority of 7 votes against 5 is sufficient. Suppose that N 
is the total number of the accused; N1 of them, convictable by our 
definition, and N2, absolvable. Then, C1 of the accused are convicted 
by a majority stronger than 7 votes, and C2, by a simple majority; A are 
acquitted because the votes were equally divided; V1 and V2 are the 
probabilities of convicting and acquitting verdicts for those who are 
convictable or absolvable respectively, and the meaning of v1 and v2 
remains without change. Let also 



 194 

 
    N1/N = k1, N2/N = k2, C1/N = c1, C2/N = c2, A/N = a. 
 
Then k1 + k2 = 1, 
 

    12 11 10 2 9 3
1 1 1 1 1 1 1 1[ 12 (1 ) 66 (1 ) 220 (1 )k v v v v v v v+ − + − + − +  

    8 4 12 11 10 2
1 1 2 2 2 2 2 2495 (1 ) ] [(1 ) 12(1 ) 66(1 )v v k v v v v v− + − + − + − +  

    9 3 8 4
2 2 2 2 1220(1 ) 495(1 ) ] ,v v v v c− + − =   

 

    6 5 7
1 1 1 2 2 2 2792[ (1 ) (1 ) ] ,k v v k v v c− + − =  

    6 8 6 8
1 1 1 2 2 2924[ (1 ) (1 ) ] .k v v k v v a− + − =  

 
    If the numbers a, c1, c2 are provided by statistics, these equations 
suffice for determining k1, k2, v1 and v2 and therefore V1 and V2. 
Statistical documents provide at once the number c1 + c2 as well as c2 
at least according to the actual legislation which obliged the jury 
panels, as did one of the previous legislations, to indicate whether a 
conviction was carried by a simple majority. However, the legislation 
is always opposed to an indication of the majority in cases of acquittal.  
    Therefore, neither the ratio a, nor any other analogue can be 
provided by juridical statistics. For numerical determinations it is thus 
necessary to reduce the number of the unknowns just as Poisson 
(1837) did it since he tacitly supposed that v1 = v2. Nevertheless, our 
analysis above concerning the appeals against the correctional police 
well agrees with considerations according to which we should suppose 
in advance that v2 and V2 exceed v1 and V1 respectively, and that v2 and 
V2 very little differ from unity.  
    The causes leading to this result for permanent judges such as those 
who pronounce judgement in correctional police courts should 
stronger influence jurymen. Still, the indication of such a result by 
direct observation would have been so interesting, that we should 
ardently desire the adoption of a measure which, without revealing the 
separation of votes in each particular acquittal, will provide the lacking 
element of criminal statistics for a long series of cases. Thus, for 
example, for each convicted or acquitted accused the foreman of the 
jury panel can be obliged to deposit in a sealed box white and black 
tickets according to the number of acquitting and convicting votes, 
with those tickets to be counted yearly out of interest for the judicial 
statistics but without violating the secret of voting in each case. It is 
not difficult to show that for our goal a registration of the results of 
such counts will be tantamount to the knowledge of the element a. 
    Not knowing its value5 but having every reason to believe that the 
value of v2 is contained between that of v1 and unity we can only 
formulate two hypotheses, v2 = 1 and v2 = v1. The true values of the 
unknowns k1, v1 and V1 are contained between those which correspond 
to the extreme hypothesis above. 
    According to the hypothesis v2 = 1, v1 will be provided by an 
equation of the fifth degree 
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    5 4 3 2 2 3
1 1 1 1 1 1 112 (1 ) 66 (1 ) 220 (1 )v v v v v v v+ − + − + − +  

    4
1 1495 (1 )v v− 51

1

2

792 (1 ) 0
c

v v
c

− − =                             (216.1) 

 
and we will then have  
 

    7 5 4 3 2 2 3
1 1 1 1 1 1 1 1 1[ 12 (1 ) 66 (1 ) 220 (1 )V v v v v v v v v= + − + − + − +  

    4
1 1495 (1 )v v− + 5

1792(1 ) ,v−                                        (216.2) 

 
    k1 = (c1 + c2)/V1.                                                           (216.3) 
 
    If, on the contrary, v2 = v1 = v, 
 

    5 5 2
2 1792 (1 ) [ (2 1) (1 ) ],c v v k v v= − − + −                       (216.4) 

 

    6 6 7 5
1 2 1 1[1 924 (1 ) (2 1)(1 ) [(1 )c c k v v k v v+ = − − − − − − +  

                 4 3 2 2 312(1 ) 66(1 ) 220(1 )v v v v v v− + − + − +  

                4 5495(1 ) 792 ].v v v− +                                     (216.5)  

 
    Without an appreciable error we may neglect the negative term 
multiplied by (1 – v)7, and then the elimination of k1 from equations 
(216.4) and (216.5) will be very simple and the root of the final 
equation in v could be obtained by trial and error the more easily since 
we know in advance that it can not much differ from that of equation 
(216.1). 
    The value of V1 is always provided by equation (216.2) in which v 
can be substituted instead of v1. Although we assumed that v2 = v1, the 
value of V2 is not the same as that of V1 since acquittals do not require 
the same majority as convictions. We have 
 
    V2 = V1 + 924 v6(1 − v)6. 
 
    Out of N accused the number of the acquitted although convictable 
will be 
 
    P = k1(1 − V1)N                                                               (216.6) 
 
and of the convicted although absolvable  
 
    Q = (1 − k1)(1 − V2)N                                                      (216.7)  
 
which disappears if V2 = 0. 
    217. In our memoir (1838) we have applied these formulas to the 
criminal statistics for the six years 1825 – 1830 during which the 
legislation admitted convicting verdicts by simple majority, although 
only if the majority of the 5 magistrates then forming the assize courts 
confirmed the majority of the jurymen. During that period we had N = 
42,300 with the number of the convicted amounting to 25,777. That 
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number however can not be adopted6 for C1 + C2 since it did not 
include the accused in whose favour the majority of the court differed 
from the majority of the jurymen. On the other hand, statistics did not 
then directly indicate the number C2 and it is only possible to calculate 
it indirectly by adopting a hypothesis which leaves incertitude in the 
result. We concluded from our calculations that c1 + c2 = 0.621, c2 = 
0.071 and c1 = 0.550. 
    During four years 1832 – 1835 the law of 4 March 1831 stipulated a 
majority stronger than 7 votes for conviction and the new penal code 
permitted the jury panel to soften the penalty because of mitigating 
circumstances. We had then N = 28,702, C1 = 11,116 so that c1 = 
0.596. We ought to conclude that the possibility of declaring the 
presence of mitigating circumstances granted to the jury panels and 
other extenuations introduced in the penal legislation increased the 
ratio c1 by about 0.046. 
    The law of 9 Sept. 1835 introduced secret vote, or rather allowed it 
for the jurymen. It stipulated a simple majority for conviction but left 
the possibility for the majority of the court to annul such verdicts when 
returned by a simple majority and compelled the jury panels to 
mention this circumstance [simple majority] of the verdict. The 
Comptes généraux for the years 1836 – 1840 of that latest phase of the 
criminal legislation directly provide the numbers C2, see the following 
table.  
    [Cournot provided a table showing the numbers of the accused 
separately for crimes against the person and against property; of the 
convicted for these crimes, separately and without distinguishing the 
categories mentioned, all this yearly for 1836 – 1840 as well as the 
total figures.] 
    We conclude that for those five years, for the total series of the 
accused and without distinguishing the category of crime, c1 + c2 = 
0.645, c2 = 0.026 and c1 = 0.619. The value of the number c1 increased 
from the second phase [of the legislation] to the third just as it did 
from the first phase to the second. The value of c2 became much less 
than its calculated (hypothetically though) value for the period before 
1831. This somewhat justifies the opinion that the jurymen during the 
previous legislation, when being perplexed, often agreed to return 
their decision by a simple majority to compel the court to pronounce 
the final judgement and thus to remove their responsibility of 
announcing the [final] verdict7. 
    218. Assuming c1 = 0.619, c2 = 0.026 in equation (216.1) we will 
have by one of the extreme hypotheses (v2 = 1) 
 
    v1 = 0.816, so that V1 = 0.987, k1 = 0.653.                            (218.1) 
 
From equation (216.6) we will then have during that five-year period P 
= 335 acquitted but convictable accused with the total number of the 
acquitted being 13,984.  
    According to the other extreme hypothesis (v1 = v2 = v) v = 0.817 
which only insignificantly differs from the previous value of v1 when 
taking into account the degree of approximation connected with such 
determinations. The same remark is applicable to the magnitude k1 
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=0.652. We have V2 = 0.997 so that equation (216.7) provides Q = 41 
convicted absolvable accused with the total number of those 
convictions being 25,440. We should not forget our definitions of 
convictable and absolvable, and we ought to be especially on our 
guard over confounding absolvable and innocent accused.  
    The Comptes généraux tell us that during those five years the total 
number of the accused convicted by a simple majority amounted to 
1023 and that the assize courts used the right conferred on them by the 
law of 1835 in favour of 20 of them. Out of those absolved by the 
majority of 3 magistrates 12 were finally acquitted by other jury panels 
and 8 were convicted anew in spite of the influence exerted on the new 
jurymen by the decision of the assize court and although magistrates 
just as jurymen are more inclined to indulge when much time passes 
between crime and judgement. 
    219. The preceding results concern the general series of the accused 
without distinguishing their categories and assuming an essentially 
faulty hypothesis according to which all the causes of error act 
fortuitously and independently on each juryman. We (§ 207) saw how 
the improvement of the judicial statistics allowing to subdivide the 
general series of judgements into ever more categories at the same 
time provided means for determining the role of those causes of error 
which influence all the judges at once.  
    The Comptes généraux first of all separates the accused into two 
main categories depending on the separation of crimes into those 
against the person and against property. Each of these is further 
subdivided in many others, and still many other divisions can be 
established depending on the sex, age, degree of education, existence 
of repeated offences, essence of punishment etc. For the sake of 
brevity we are only discussing the first two categories. The table [of § 
217] provides for them respectively 
 
    c1 + c2 = 0.556, c2 = 0.032, c1 = 0.524;  
    c1 + c2 = 0.679, c2 = 0.024, c1 = 0.655. 
 
    We will accompany letters v, k, … with one or two strokes 
depending on the category of crime. First of all, we have by the 
hypothesis that 1 = v′2 + v″2  
 
    v′1 = 0.796, v″1 = 0.821 so that  
    V′1 = 0.979, k′1 = 0.568; V″1 = 0.989, k″1 = 0.682 
 
    We should remark that the large difference between the values of c1 
and c2 in each category affects the element k1 much more than v1. For 
the general series the values of v1 and k1 calculated as above and 
formulas  
 
    v1= k′v′1 + k″v1″, k1= k′k′1 + k″k1″  
 
where k′ and k″ are the rates of the accused for crimes in the two main 
categories (k′ + k″ = 1), provide 
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    k′ = 0.2731, k″ = 0.7269 so that v1 = 0.814, k1 = 0.651. 
 
    When comparing these values with the system (218.1), we see that 
the difference is very small and it is possible to regard the mean values 
of the elements v1 and k1 for the general series as determined with 
sufficient approximation in accordance with the essence of the data 
without previously multiplying the number of categories. We also have 
P′ = 127, P″ = 215, so that P′ + P″ = 342 which little differs from P = 
335 provided by the general series. 
    As remarked above, we can without an appreciable error or with an 
error of the order supposed for the uncertainty of the data assume the 
previous values of v′1, v1″, k′1, k1″ as v′, v″, k′1, k1″ in accord with the 
other extreme hypothesis, v′1 = v′2 = v′, v″1 = v″2 = v″. Then 
 
    V′1 = 0.996, V″1 = 0.998, and Q″ = 18, Q′ = 19, Q′ + Q″ = 37 
 
instead of Q = 41 determined for the general series. This means no 
more than one accused in a thousand is convicted although absolvable; 
convicted, although according to our definition, the chance of a 
convicting vote for them fell below 1/2.  
    Concerning that small number of the accused it is legitimate and 
comforting to believe that the majority is guilty, but it is impossible to 
evaluate even approximately the probability of their real guilt. On the 
other hand, that category of convicted although absolvable accused 
does not necessarily include all the accused who can be convicted 
although innocent. It is regrettably possible that for some innocent 
accused the chance of a convicting vote exceeds 1/2 and is even very 
close to unity. Calculation applied to judicial statistics has no means 
for revealing this possibility and assign a chance to it. 
    220. Concluding what we have to say on this subject, we believe it 
useful to add some explanations to those given above about the 
meaning of the letters v1 and v2 and about the sense of the fundamental 
distinction established between the convictable and absolvable accused. 
    For simplifying the discussion, we will at first only consider 
accused of the same category at whose trial all the causes of error act 
fortuitously and variably from one judge to another. We will also 
admit that with regard to those accused it is only possible to 
distinguish one category of citizens chosen, or possibly chosen to 
perform the duties of a juryman. The ratio of the number of convicting 
and acquitting votes will be the same whether for the same randomly 
chosen juryman trying successively a very large number of accused or 
for a very large number of jurymen asked about the same accused.  
    In either case that ratio is v1/v2 with v1 and v2 being the chances of a 
convicting and acquitting vote for the mentioned categories of accused 
and jurymen. Therefore, since we understand and ought to understand 
convictable accused as such for whom v1 and therefore v2 exceed ½, 
those convictable accused will certainly be convicted at least by a 
simple majority if the pleadings are conducted before a very large 
number of jurymen for each of whom the chances v1 as well as v2 have 
the same values. And it is not difficult to see that this conclusion also 
persists when it is not anymore permissible to admit the just mentioned 
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condition for all the citizens from whom jurymen are chosen by 
chance.  
    Actually, v1 and v2 therefore denote means 
 
    k(1)v1

(1) + k(2)v1
(2) + …, k(1)v2

(1) + k(2)v2
(2) + … 

 
where v1

(1), v1
(2), … v2

(1), v2
(2), … are the values of v1, v2, … for each 

category of jurymen and k(1), k(2), … express for each category the rate 
of citizens composing those categories. However, the same mean 
values also express the probabilities that a juryman chosen by chance 
from the general list will convict or acquit an accused and when the 
former exceeds 1/2 (i. e., when the accused is convictable in the sense 
of the definition) we are sure that conviction will follow at least by 
simple majority if a very large number of jurymen randomly chosen 
from the general list can be called to the pleadings. 
    According to this manner of defining the magnitudes v1 and v2 and 
their analogues, the problems treated in this chapter assume a purely 
arithmetical sense easily understood even by people remote from 
mathematical analysis. Eliminated are delicate considerations 
following from the use of the words truth and error, when applied to 
judgements such as those pronounced by tribunals, for which there is 
no general criterion of verity. Nevertheless8, we believe to be duty-
bound to prefer a method which connects the conveniently modified 
theory of judgements of tribunals with the theory of chances of verity 
or error in judgements considered generally. That method facilitates 
the comparison of our analysis with that of the authors treating the 
same subject, and more clearly shows, as we think, the imperfection of 
the previous theories and can direct them towards an improvement. 
    221. The contempt for the calculus of judicial chances felt by certain 
lawyers is unfounded and I believe that the legislators’ viewpoint 
about the organization of tribunals is in essence the same as that of 
geometers. The former are only interested in the mean and general 
results of the system they establish; the latter know that their formulas 
are only useful when applied to large numbers without being 
applicable to a particular case. If desiring to confirm authentically their 
assumptions, legislators can only study judicial statistics; and without 
statistics the formulas of the geometers remain sterile or at least only 
some general propositions rather than numerical results can be derived 
from them. 
    The former know or ought to know that judicial institutions can 
never prevent fatal blunders when all the manifestations of a crime 
point to an innocent accused; that in civil cases those institutions do 
not impede errors due to dominant prejudices; that their sole aim is to 
guarantee a judgement conforming to the opinion of a majority of 
impartial and enlightened contemporaries; to offer even in criminal 
cases a sufficient assurance that a convicting decision will be approved 
by a great majority; and to restrain the anomalous influence of chance 
on the fate of the accused. 
    All the events which the legislator can not perceive by his means 
just the same can not be submitted to calculation by a geometer, but 
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what is understandable to one of them is assessable to the other by 
studying statistical documents. 

16.2. On the Probabilities of Testimonies 
    222. Our long discussion of the probabilities of judgements allows 
us to restrict the present subject to a few considerations.  
    Unreliability of a conscientious witness is akin to that of an honest 
judge. The former’s testimony, like the latter’s vote can only be wrong 
due to an error of judgement. There is therefore room for applying our 
theory of the probability of judgements to probabilities of testimonies 
provided that the witnesses are not suspected of ill will.  
    Suppose that a large number of times the same person A is involved 
as a witness and that by some means we are able to distinguish quite 
certainly true and mistaken testimonies. Denote by m1 the total number 
of testimonies, n1 of them true. The fraction n1/m1 = v1 expresses the 
chance [the probability] of truth of A’s testimony. In other words, if A 
will testify again under similar circumstances the ratio n2/m2 of his 
testimonies admitted as being true will not appreciably differ from v1 if 
only the numbers m2 and n2 are sufficiently large as were m1 and n1.  
    Suppose that v2 is analogues to v1 for witness B and assume as in § 
193 that the causes influencing A’s verity or error are completely 
independent from those influencing B. Then  
    [1] The probability of an agreement between A and B is 
 
    p = 1 − (v1 + v2) + 2 v1v2.                                                   (222.1) 
 
    [2] The probability of their disagreement is 
 
    q = v1 + v2 − 2 v1v2 = 1 − p. 
 
    [3] The probability of the testimony’s verity in case [1] is 
 

    1 2

1 2 1 2(1 )(1 )

v v
V

v v v v
=

+ − −
  

 
etc. If the numbers v1 and v2 are not known in advance, but the number 
p is quite precisely determined by experience we will at least know 
that those numbers ought to satisfy equation (220.1). 
    223. Suppose that the chance of verity of a third witness C is v3 and 
that all three are simultaneously testifying about a large number of 
cases. Each of them can successively find himself in opposition to the 
others or all of them can agree. Denote by a, b, c, d the probabilities of 
these four combinations, then 
 
    a = v1(1 − v2 − v3) + v2v3 
    b = v2(1 − v1 − v3) + v1v3                                               (195.1b, c, d) 
    c = v3(1 − v1 − v2) + v1v2 
 
and p = 1 − (a + b + c). Assume that observations provided the 
numbers a, b and c, then the values of the chances v1, v2 and v3 can be 
derived from equations (195.1b, c, d). Indeed, it is impossible to 
determine these values directly since a criterion for discerning correct 



 201 

and erroneous testimonies is lacking. However, we will not discuss the 
consequences of this remark; we considered them for the probabilities 
of judgements proper whereas no statistics of testimonies is practically 
possible and no means exist for deriving numbers from formulas. 
    If C is opposed to A and B, the probability of his error is 
 

    1 2 3

1 2 3 1 2 3

(1 )
.

(1 ) (1 )(1 )

v v v

v v v v v v

−

− + − −
 

 
It is reduced to v1 if v2 = v3. The testimonies of B and C are 
contradictory and of equal value and therefore neutralize each other 
and the probability of the verity of A’s testimony remains without 
change as though he is the only witness.  
    For understanding this proposition in its veritable sense we should 
suppose that the number of trials was very large and the number of 
those in which A agreed with B and disagreed with C was registered. 
The rate of A’s true testimonies in that partial series will not 
appreciably differ from the value v1 derived from the complete series. 
    If the three witnesses agree, the probability of the truth of their 
testimonies becomes 
 

    1 2 3

1 2 3 1 2 3

.
(1 )(1 )(1 )

v v v
V

v v v v v v
=

+ − − −
 

 
In general, if all n witnesses [!] agree, that probability will be 
 

    1 2 3

1 2 3 1 2 3

...
.

... (1 )(1 )(1 )...(1 )
n

n n

v v v v
V

v v v v v v v v
=

+ − − − −
 

 
    Suppose that all fractions v1, v2, v3, … vn, exceed 1/2, then as n 
indefinitely increases the value of V will in general approach unity. We 
can however suppose that vn decreases with an increasing n and 
indefinitely tends to 1/2 according to such a law that V converges to a 
value differing from unity. 
    224. Suppose now that we separate the witnesses depending on the 
essence of the attested fact. We will certainly see that the chance of 
verity of the testimony of A, whom we believe to be invariably honest, 
is not the same in all selected categories. Experience would show this, 
had it been possible to check verity by a criterion in a numerous 
enough series of testimonies. Lacking such an experience, our 
knowledge of the laws of human nature will sufficiently well indicate 
this circumstance. Fondness for the marvellous, force of prejudices, 
exaltation of emotions by sectarian and party views, − all that which 
brings into play sympathies and antipathies of the human heart 
influences witnesses, most often unaccountably, and leads them to 
illusions, bewilder them, expose them to err involuntarily.  
    All previous authors, when appreciating testimonies, understood the 
need to allow for the essence of the attested fact. However, they 
reasoned as though the probability of the fact in itself should be 
combined with the probability of the witness’s verity supposed to be 
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invariable for the same person whatever the essence of that fact. 
Actually, it is this latter element which varies with each category of 
facts. In addition, the impossibility of assigning the law of that 
variation from one category of facts to another evidently renders 
impracticable any numerical applications. 
    225. According to the theory of probability of judgements we did 
not explicitly allow for the possibility of judges’ malfeasance and did 
not distinguish between interior decisions suggested to them by their 
enlightenment and their votes. In essence, this distinction is not 
necessary and we can consider malfeasance as an error of vote in an 
exterior decision. Even if there is no malfeasance in its proper sense 
the judge’s or juryman’s vote in criminal cases can oppose his interior 
judgement. Thus, a feeling of pity determined him to acquit an accused 
although internally he believed that person to be guilty. 
    We can just as well consider the chance of a witness deliberately 
deceiving us, perhaps being corrupted by a bribe, interlaced with other 
chances influencing his verity or error. On certain occasions and 
especially when a solemn oath is lacking, a witness can lie, just as a 
judge without there being any malfeasance in its proper sense because 
he believes, reasonably or not, to have a good reason for concealing 
the truth. Previous authors9 distinguished the witness’s chances of 
error and lie without proposing a similar difference for judges, 
undoubtedly because we ought to fear a witness’s lie much more than 
a judge’s formal malfeasance. However, this distinction can be 
admitted in theory but it is barely useful in practice since it is 
absolutely impossible to determine either chance quantitatively and 
separately.  
    We will not say anything more about our subject and we guard 
ourselves against the desire to apply the calculus of probability to facts 
supposed to be known to us through a chain of witnesses or by 
tradition10. The values of the elements included in such calculations 
are not at all assignable and in addition the very combinations of these 
elements rests on arbitrary hypotheses establishing fictitious 
independence between actually solidary facts whose solidarity 
prevents any legitimate application of the theory of chances. 
 

Notes 
    1. In this connection Cournot (1838) earlier mentioned Poisson’s law of large 
numbers. [B. B.] It is generally known that, being under Bienaymé’s influence, 
Cournot here ignored that law. O. S. 
    2. Same remark. [B. B.] 
    3. Montesquieu noted that an inevitable harsh punishment often compelled judges 
to acquit the accused. [B. B.] 
    4. This seems to be one-sided and in any case unjustified.  
    5. Gelfand & Solomon (1974) applied American statistics and evaluated the 
parameter v1 without supplementary hypotheses. They concluded that v1 and v2 little 
differed from each other. [B. B.] 
    6. Poisson (1837, § 135) did just that and concluded that c1 + c2 = 0.6094. [B. B.] 
    7. Earlier Cournot (1838) pronounced a contrary opinion. [B. B.] 
    8. Earlier Cournot (1838, p. 333) stated that he had studied Poisson’s book (1837) 
with all attention of which I was capable and largely followed him. [B. B.] See also 
Note 5 to Chapter 15. O. S. 
    9. Bru referred to Laplace (1812/1886, pp. 455 – 458) and noted that Lacroix had 
thought that Laplace’s pertinent formula was practically useless. 
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    10. This is what Craig in 1699 and Laplace had done. [B. B.] 
    On Craig see Stigler (1986). Poisson (1837, §§ 39 and 40) should also be 
mentioned. O. S. 
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Chapter 17. On the Probability of Our Knowledge  

and on Judgements Based on Philosophical Probabilities. 

Summary. 

[17.1. On the Probability of Our Knowledge  

and on Judgements Based on Philosophical Probabilities] 
    226. All our faculties by which we acquire knowledge are or seem 
to be subjected to error. Senses are illusory, attention dulls, memory is 
capricious, and the faculty of calculating or reasoning escapes us many 
times in succession. Thus, we justly do not believe ourselves and 
regard that verity is only established after being checked and admitted 
by a large number of competent judges situated in various 
circumstances.  
    During each period of the history of philosophy sceptics boasted 
about this maxim of common sense for denying the possibility of 
distinguishing the true and the false. Other philosophers concluded that 
our knowledge, although never completely certain, can acquire a 
probability ever nearer certainty, still others regarded a unanimous 
agreement as the sole and solid foundation of our knowledge. 
Philosophical criticism is beyond the scope of this book, but we ought 
to say a few words about its fundamental issues in so far as they are 
connected with the theory of chances and probabilities whose 
principles and all its important applications we desire to indicate.  
    Let us admit that each faculty by which we acquire knowledge can 
be likened to a fallible judge or witness. A superior intelligence with 
an unlimited scope of understanding which penetrates for example the 
mysterious skill of the memory will be able to assign the chance of 
verity or error attached to the action of each function, to the 
application of any of our faculties for each individual under certain 
determined circumstances. We will perhaps recognize that for some 
people under certain circumstances the chances of error disappear. 
Indeed, nothing authorizes us to affirm absolutely that no intellectual 
operation, even the simplest of them, is free from a chance of error.  
    An intelligence lacking that capacity but possessing an infallible 
criterion can therefore experimentally determine the chances of error 
inherent in exercising each of our faculties had it been possible to 
carry out a sufficiently numerous series of trials under suitably 
determined psychological conditions. However, we will never acquire 
a posterior absolute certainty that, under certain conditions, the chance 
of error disappears or that the possibility of an error is exactly zero. 
    Even when that intelligence does not have such a criterion of verity, 
observations can lead it to a numerical determination of the unknown 
chances of error, or at the very least of the mean of the values which 
these chances can take when passing from one person to another, from 
one category [?] to another if only we assume that the chance of verity 
is invariably higher than the chance of error. This restriction is 
necessary if we agree that human faculties are normally destined for, 
and result in leading us to verity. Mistaken perception or judgement is 
an anomaly caused by an accidental disturbance of faculties and 
functions. We thus return to the mathematical theory of judgments or 
testimonies which was the subject of the [two] preceding chapters. 
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    227. However, we should not be mistaken. That theory is of little 
interest here even if we have the necessary knowledge for assigning in 
advance the numerical values of the chances which are entering [the 
formula] as elements, or if supposing that we are able to determine 
these values experimentally. Indeed, it is important to weigh in each 
case in particular the force of the reasoning leading us to believe, to 
reject or to abstain from agreeing [?], and the mathematical theory as 
expounded until now most often only provides deceptive indications. 
    Suppose for example that it is perfectly established by experience 
that each of the two people, A and B, is subject to err only once in 
twenty numerical calculations of a well determined kind, such as a 
solution of a right triangle. It does not follow that since B attentively 
checked A’s calculation and found it correct, the probability of its 
error is exactly (1/20)2 = 1/400. Actually, by the very fact that B 
proposed to check an already obtained result, we may think that he 
will be more attentive and better guarded against the chances of error.  
    Even when B had not known A’s result and did not wish to check it, 
it will be extraordinary that from all possible calculative mistakes the 
same one remains unnoticed by both or that B overlooks another 
mistake affecting the final result in the same way1. Therefore, if the 
two calculators exactly agree, the probability of the correctness of their 
common result as derived by applying these notions [?] about 
combinations and chances, can much exceed 399/400. The calculation 
of that probability is a complicated problem whose solution depends 
on the kind of the numerical calculations which provided the common 
result, on the number of the retained digits etc.  
    If, on the contrary, the faults of the calculation depended on some 
mistake in the common method applied by both A and B, or some 
error in the tables applied by them, the probability of the same error in 
the coinciding result can exceed 1/400. Suppose now that the result 
obtained by those two calculators satisfies some simple law suggested 
by the theory, already verified by similar cases and expected to be 
confirmed once more. Everyone will agree to regard extremely 
unlikely or even impossible that an accidental calculative error 
provides exactly that, which brings the result in compliance with the 
theoretical law. No one will ever doubt the correctness of the obtained 
result and will never inquire whether those two calculators are subject 
to err once in 20 or a 100 times.  
    228. We considered an example of a numerical calculation, i. e., of 
the most mechanical of sorts intellectual operation, but a similar 
reasoning is evidently applicable to all the actions of the mind directed 
to obtaining knowledge. Nevertheless, the evaluation of the chances of 
error whether in advance or after the calculation seems to present 
difficulties the less surmountable the more complex are the operations 
or the involved areas of our intellectual organization are more 
concealed. 
    Even greatest geometers fall into error and propositions admitted in 
pure mathematics are later abandoned as wrong or inexact. 
Nevertheless, it would be extraordinary and therefore very improbable 
that so many geometers for more than 20 centuries have been 
mistakenly thinking that the Euclidean demonstration of the 
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Pythagorean proposition was irreproachable. Indeed, when considering 
that that theorem had been proved in many ways, and that it conforms 
to the entire system of perfectly connected propositions, we become 
totally convinced in that the demonstration conforms to the laws 
regulating human thinking and that this theorem belongs to the rank of 
truths subsisting independently from the faculties revealing them to us 
and from the laws governing them.  
    Similar remarks are applicable to historical testimonies. We firmly 
believe in the [former] existence of that person who was called 
Augustus not only because many historians mention him and agree 
about the main circumstances of his life, but also because Augustus is 
not an isolated figure but renders meaning to many contemporaneous 
and subsequent events which would have remained groundless and 
unconnected when such an important link is removed from the 
historical chain.  
    If some unusual minds doubt the Pythagorean proposition or the 
[former] existence of Augustus, it will not at all shake our belief; we 
will not hesitate to decide that some of their intellectual faculties are 
disordered, that they overstepped the normal conditions necessary for 
performing their destination.  
    229. Therefore, neither the repetition of the same judgements2 nor a 
unanimous or nearly unanimous agreement is the sole foundation of 
our belief in certain truths. It mainly rests on a perception of a rational 
order of linking the truths and on a conviction that the causes of error 
are anomalous, irregular and subjective, and can not engender such a 
regular and objective coordination.  
    This is indeed the principle of philosophical criticism3 of our 
knowledge. Our senses, and in general the performance of all the 
faculties by which our knowledge is extended or perfected, are guided 
and controlled by a superior and regulating faculty called reasoning. 
And the human mind is able to rouse us to inquire about the reasonable 
in various things, is the faculty of perceiving the chain of causes and 
effects, of principles and consequences.  
    And an aberration in the sensibility of some individuals being in 
certain anomalous physiological states or even in those normally and 
periodically reproduced in our sleep, in spite of the objections of 
ancient sceptics are certainly unable to shake our belief in the 
testimony of the mind. The notions about the external objects when we 
are awake and our senses function normally, perfectly agree one with 
another. Impressions of various nature rendered by our different senses 
are well enough connected, systematized and coordinated.  
    Memory identifies the notions provided by our senses beginning 
from the obscure period of our babyhood when their training is 
completed in spite of the variability of painful or agreeable feelings 
which, during the different periods of life, accompany for each of us 
the perception of those same external objects. The same identification 
of those objects unites in each of us our faculties and clearly manifests 
itself in our continuous encounters with other human beings whereas 
no regular connection exists between our dreaming today and 
tomorrow or between dreams of different people.  
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    And finally, although little do we know about the principle of 
sensibility and of our psychological functioning, we know enough for 
discerning that the perturbations of sensibility during sleep or because 
of other circumstances of the organic life result from suspending or 
obliging certain faculties, from an injury of certain organs. Exceptio 
firmat regulam [Exception proves the rule].  
    Sometimes our senses expose us to illusions, but they can be called 
normal because they are universally adopted and do not result from 
accidental disturbances of their functioning. Such are optical illusions 
causing the sky to look like a flattened vault whereas the Moon seems 
to be much larger at the horizon than near the zenith. Numerous 
explanations have been proposed of these and of many other illusions. 
However, even if they had remained inexplicable, the concurrence [of 
the indications] of our other senses and the intervention of our mind 
would have hastened to rectify the errors of judgement which can at 
first accompany them.  
    If one faculty apparently contradicts another one, our mind, without 
being embarrassed, will decide between them. It discerns which of 
them is preeminent and does not hesitate to perceive the phenomena in 
such a manner that solely suits a systematic and regulated coordination 
and solely satisfies the supreme laws of the mind. 
    230. It is also the mind understood as a faculty judging all the others 
which the philosopher asks whether the notions provided to us by the 
system of inferior faculties about the external objects are only true as 
human verities suited to our condition, to the laws of our proper nature, 
or, on the contrary, whether these faculties are granted to humans for 
attaining in a certain measure an effective knowledge of what are 
things externally and objectively. 
    We see some celestial objects traversing the terrestrial atmosphere 
which deflects their luminous rays and alters for us [their] relative 
position. Owing to the same disturbing cause called astronomical 
refraction the stars do not seem to rotate uniformly in perfect 
circumferences about the axis of the world. However, even had not the 
experience of the physicists instructed us in the laws of refraction, it 
would have been sufficient for us to remark that the anomalies of the 
diurnal motion of the stars change with the observer’s horizon [with 
their zenith distances] for concluding without hesitation that these 
anomalies are only apparent, depend on the conditions of observation 
and have no objective reality. 
    Assume now as Fr. Bacon did the possibility of such a structure of 
the human eye that the relative positions of the stars corrected for the 
refraction are still wrong and that therefore the laws of the diurnal 
motion in all their imposing simplicity are only illusory. Conclude that 
perhaps all the edifice of the astronomical sciences resting on those 
laws is baseless? These consequences are contrary to the mind. Indeed, 
how could have happened such a faulty structure of the human eye that, 
without being able to disturb the external phenomena’s order and 
regularity it introduces [?] the lacking order, regularity and simplicity? 
    Just the same, we are firmly convinced that observation does not fail 
us at all, that, after taking into account the deflection caused by the 
intermediate atmosphere and some other disturbances originated by the 
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Earth’s motion, the stars are shown to us in their veritable optical 
positions. Had we enough place, we would have indicated that similar 
conclusions certainly justify even for the most meticulous mind the 
received objective reality of the fundamental notions of space and time. 
We would thus dispel the systems of the modern sceptical school 
which only desires to understand those motions as laws proper to the 
human mind, as forms of our thoughts, having no external reality. 
    231. That discussion of our intellectual faculties and their 
engendered ideas which seems to us as an essential object of 
philosophical speculations, unlike geometrical theorems, is not at all 
proceeding by demonstrations, and, unlike formal reasoning, does not 
lead to conclusions from premises. The existence of bodies, the 
objective reality of space and time can not be proved and the same 
should be said about the most certain physical laws, such as the law of 
gravitation. Indeed, what can prevent a misconstrued mind demanding 
in such cases geometrical demonstrations to attribute to chance the 
invariable agreement between the Newtonian hypothesis and 
observations of phenomena? 
    Therefore, independently from apodictic proofs, or formal 
demonstrations, there exist philosophical or rational certitudes 
resulting from judgements of the mind by appreciating various 
suppositions or hypotheses, admitting some of those introducing order 
and rational chains in the system of our knowledge and rejecting those 
incompatible with that rational order of the world pursued by human 
intelligence as avidly as possible. 
    Thus, certain natural and instinctive beliefs are legitimized in the 
eyes of the mind whereas others are rejected as prejudices or illusions 
of our senses. In the final analysis all our knowledge is based on that 
philosophical certitude since all demonstrated truths issue from 
primary truths accepted but indemonstrable.  
    232. The derived secondary certitude acquired by logical 
demonstration is fixed and absolute, does not admit any nuances or 
degrees, but the judgements of the mind on which we insist are the 
foundation of the certitude of the received verities. Under certain 
conditions they produce unshakeable conviction, but in many cases 
they seem only to lead to probabilities lowering by imperceptible 
nuances and they act differently on various minds.  
    For example, in the present state of science some physical theories 
are thought to be more probable than others since they apparently 
better satisfy the rational chain of the observed facts, since they are 
simpler or discover more remarkable similarities. However, these 
similarities and inductions do not strike all minds, even most 
enlightened and impartial of them, with the same force. Intellect 
recognizes certain probabilities which nevertheless are insufficient for 
establishing complete conviction. They change with the progress of 
science. Some contested theories become unanimously accepted, some 
are sooner or later rejected which proves that their probabilities 
include elements varying from one mind to another.  
    In other cases, we are condemned only to possess probabilities and 
such is the problem of inhabitancy of [other] planets. We are 
astonished by the similarity between those planets and our Earth, and 
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disgusted to admit that, according to the design of nature, a tiny globe 
lost in the midst of immense spaces is the only one on whose surface 
wonders of organisation [?] and life have developed. However, we can 
not at all expect that the progress of science will throw new light on 
things which nature apparently designed to leave beyond any means of 
observation. Relatively near us a globe whose dimensions are 
comparable to terrestrial seems to be situated in such physical 
conditions under which any life organized similarly to that peopling 
our Earth is impossible. As the mind becomes more astonished by 
similarities and dissimilarities, it more or less firmly adheres to the 
philosophical opinion about most worlds. 
    233. That subjective probability is variable and sometimes either 
excludes doubt or only glimmers, and we wish to call it philosophical. 
Indeed, it is caused by that superior faculty by which we judge the 
nature of things. Should it be thought to be in essence the same 
probability with which we have been dealing until now and connected 
with the notions of chances and randomness, or, as we explained many 
times, should it be linked with the concept of independence of 
combined causes? The identity is somewhat obscure and, since it 
complies with the rules of philosophical criticism, it suffices for us to 
remain on this side of possible reductions rather than to risk a 
confusion of really distinct principles. Let us see whether it will not be 
possible to further the analysis and formally isolate this distinction. 
    234. For better fixing the ideas, we consider a fictitious and very 
simple example. Suppose that a variable magnitude can take values 
expressed by numbers from 1 to 10,000 and that 4 of its observations 
or measures formed a geometric progression. We will be really 
inclined to think that that result was not fortuitous, that it could not 
have been caused by an operation comparable to 4 drawings by chance 
from an urn containing 10,000 tickets numbered from 1 to 10,000; that, 
on the contrary, it indicates the existence of a regular law in the 
variation of the measured magnitude and in the order of the succession 
of its measures.  
    Instead of a progression of the kind we call geometric, the 4 
numbers obtained by observation could have offered some other 
arithmetical law. For example, they can form 4 terms of a progression 
with equal differences [arithmetic progression], or a series of square, 
cubic, triangular, pyramidal etc. numbers. The number of laws of this 
kind is unbounded and, as indicated by the theory of interpolation, we 
can even always find one which mathematically connects the 4 
obtained numbers.  
    However, if the mathematical law to which we have to turn for 
connecting those 4 numbers, is expressed in an ever more complicated 
way, it becomes ever more probable that their succession is due to 
chance or a combination of independent causes. On the contrary, if the 
law appears very simple, and even if sufficiently numerous 
observations do not strictly satisfy it, we will not hesitate to admit its 
existence and to attribute the pertinent deviations to errors of 
observation or some disturbing causes too late indicated by the theory. 
    But what exactly means the simplicity of a law? How to compare 
and rank in this sense the infinitely varying laws capable to be 
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imagined by the mind and presented mathematically? This problem 
can seem unsoluble in itself, and so it is for us owing to the 
imperfection of our knowledge. And even if soluble, with the ranking 
established, it will not at all result in a numerical estimation of the 
probability of the existence of a law which a restricted number of 
observations satisfy strictly or approximately.  
    235. The planetary system offers a very remarkable example which 
almost exactly returns us to the abstract hypothesis of § 234 and can 
further elucidate our subject4. It was noted long ago that, after ranging 
the planets (except Mercury) by their distances from the Sun, the 
intervals between their orbits or the differences between the mean 
distances of two consecutive planets from the Sun almost follow a 
geometric progression with ratio 2. Thus, assuming the interval 
between the orbits of Venus and the Earth as unity, the following 
intervals will be expressed by numbers 2, 4, 8, …: 
 
    Venus − Earth, 1; Earth − Mars, 2;  
    Mars − Vesta etc − 4; Vesta etc − Jupiter, 8;  
    Jupiter − Saturn, 16; Saturn − Uranus − 32 
 
    This progression which the mean distances in the astronomical 
sense or the semimajor axes only approximately satisfy, is strictly 
obeyed by the limits of the eccentricities5. Indeed, assign for each 
planet a value of the radius vector between the perihelion and the 
aphelion distances so that the series satisfies the progression of those 
double intervals. It is apparently very difficult to attribute to chance 
such a simple ratio and not to see here a law of the construction of the 
planetary system although the theory does not indicate the causes 
which governed its formation. 
    Before the four telescopic planets [Vesta etc] were discovered and 
even before Uranus became known and added a new term to the series 
thus essentially corroborating the probability of the discussed law, 
eminent minds6, surprised by the gap in the series of intervals between 
Mars and Jupiter, had suspected the existence of an intermediate planet. 
The mean distances from the Sun of the four telescopic planets little 
differ one from another; more than one indicator led to regard them as 
the debris from a destroyed planet and the previous conjectures were 
thus verified. It became much more difficult to regard the progression 
of the double intervals as a fortuitous coincidence. 
    Nevertheless, Mercury is an exception because the interval between 
its orbit and that of Venus is approximately equal to the interval 
between Venus and the Earth, not twice smaller as required by the 
presumed law. To solve this anomaly Bode, a German astronomer of 
the 18th century, imagined another law. Express the mean distance of 
the Earth from the Sun by 10, then those distances for Mercury will be 
approximately 4, for Venus, 4 + 3 = 7, and for planet number i 
beginning with Venus,  
 
    4 + 3·2i−1:                                                                       (235.1) 
 
    Mercury, 4; Venus, 7; Earth, 10; Mars, 16;  
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    Vesta etc., 28; Jupiter, 52; Saturn, 100; Uranus, 196 
 
    Because of the constant 4, the formula (235.1) is not as simple as a 
geometric progression whose terms are free from a constant. In 
addition, the anomaly presented by Mercury is not completely 
eliminated: we are unable to derive Mercury’s distance from the Sun 
by attributing a suitable value to i. In addition, Mercury is an exception 
to the system of the 7 main planets both by the eccentricity of its orbit 
almost equal to those of the orbits of Juno and Pallas and by the 
notable distance of the pole of its orbit from the region of the sky in 
which the poles of the 6 of the planetary orbits are now situated (§§ 
145 and 156).  
    We will now inquire whether it is possible to assign a numerical 
value to the probability of the Bode law presented in one or another 
form, whether it is possible to take numerically into account its 
confirmation by discovery of new planets or its refutation by 
Mercury’s anomaly. All this discussion evidently leads to probabilities 
which natural philosophy [philosophy of science?] can not neglect. 
Still, by their essence they can not lead us to complete certainty and a 
possibility of numerically expressing them can only be an illusory 
wish.  
    236. When replacing purely arithmetical notions by geometric 
considerations the remarks of § 234 acquire a new power. Suppose that 
10 points determined on a plane surface by so many observations are 
situated on a circumference. We will not hesitate to admit that that 
coincidence has nothing fortuitous but indicates a law. If these points 
very little deviate from a circumference, some of them in one direction 
and some, in another, we will attribute the deviations to errors of 
observations or disturbing causes of an inferior order rather than 
abandon the law.  
    We will be even more surprised and hesitated still less to attribute 
the result to a regular cause if the pertinent circle occupies certain 
remarkable positions, if, for example, its centre coincides with the 
centre of the figure on the plane [?] on which all the points should be 
situated. Instead of a circumference the points can be situated on [the 
perimeter] of an ellipse, on a parabola, on an infinity of various curves 
susceptible of a mathematical definition. And the theory informs us 
that it is always possible to find a curve among those qualified as 
mathematical passing through all the observed points whatever is their 
number even when their individual situation depends on fortuitous and 
independent causes. 
    The probability that the observed points were situated under the 
influence of regular causes depends however on the simplicity 
attributed to the curve that connects them exactly or approximately. 
Any classification of lines in this sense is incontestably artificial 
whether it depends on the degree or the number of terms of their 
equations or of the number of the included parameters. From a certain 
point of view a parabola can be regarded as being a simpler curve than 
a circle [?]. A curve having a transcendental equation, a spiral for 
example, can in a sense be regarded as simpler and more proper to 
express a law of nature governing the production of certain phenomena 
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than an infinite number of curves having algebraic equations 
[algebraic curves]. However, the feeling of simplicity of an observed 
curve as opposed to that of an infinite multitude of possible curves 
leads to a judgement of the probability [?] which is not at all expressed 
in numbers7 as resulting from an enumeration of favourable and 
unfavourable cases for the production of an event when cases are 
equally possible or at least when we have no reason to prefer one case 
to another.  
    237. Poisson (1837, § 42) proposed to assign a probability that a 
remarkable event was due to a special regular cause rather than to a 
combination of chains. [Cournot inserts a long passage in which 
Poisson provided examples of remarkable extractions of 30 balls of 
two colours from an urn and of remarkable arrangements of printed 
letters.] 
    By the usual rules admitted in the theory of posterior probability and 
issuing from this statement and assuming that we know how many 
events are remarkable and how many, not remarkable, Poisson 
determined the probability that the occurrence of a remarkable event is 
not at all due to chance. The defect of this reasoning consists in 
supposing, first, that we can demarcate remarkable and unremarkable 
events8, and, second, that that events believed to be remarkable are 
supposed remarkable to the same degree and placed on the same level. 
Who can tell, after exhausting all possible combinations of the order of 
the occurrence of those 30 balls, when a combination ceases to be 
remarkable? And how about the combinations of printed letters: if a 
traveller recognizes a few words spoken by a savage tribe, will it be 
for us as remarkable as another combination offering us usual words in 
our language? Will we consider equally probable that neither was 
caused by fortuitous causes?  
    238. In addition, the number of combinations in Poisson’s examples, 
whether remarkable or not, is restricted whereas we saw above that in 
most cases a judgement about a similar probability was based on the 
simplicity presented by an observed law as compared with an infinite 
number of laws regarded equally possible if only the law indicated by 
observations had no intrinsic raison d’être but was a result of a 
fortuitous combination of independent causes.  
    Here, the number of remarkable laws, just as that of unremarkable 
laws (supposing that they can be separated with laws of each category 
placed on the same level) is unbounded and indefinite and we can not 
imagine how the ratio of those two numbers converge to a finite and 
assignable limit when both indefinitely increase. Any possible 
application of the notions of mathematical probability to judgements 
about the discussed probability is therefore corrupted and illusory. 
    239. Geometers have nothing to do with probabilities resisting the 
application of calculation, but we should never decide that in the eyes 
of the philosopher those probabilities ought to be considered useless. 
As we have indicated, all the criticism of human knowledge beyond 
the narrow path of logical deductions is based on probabilities of that 
nature. Sometimes they puzzle all minds by determining or justifying 
the irresistible conviction called common sense, in other cases they are 
only appreciated by trained intelligence. When investigating new 
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truths, the geometer himself is most often only guided by probabilities 
of that kind which allow him to feel the searched truth before 
becoming able to demonstrate it and to offer it in that form to all minds 
capable of comprehending a succession of rigorous reasoning. 

[17.2. Summary] 
    240. We will summarize in a few words the main points of the 
doctrine which we attempted to establish in this essay.  
    240/1. The notion of randomness is conveyed by a coincidence of 
independent causes producing a determined event. Combinations of 
such diverse causes equally contributing to its occurrence should be 
understood as its chances. 
    240/2. If among infinitely many chances only one is possible to 
produce the event, that event is physically impossible. The notion of 
physical impossibility9 is neither a fiction of the mind, nor an idea only 
valuable relative to the state of our imperfect knowledge. It should be 
included as an essential element in the explanation of natural 
phenomena whose laws do not depend on that knowledge.  
    240/3. When considering a large number of trials of the same 
randomness the rate of the occurrences of an event becomes 
appreciably equal to the rate of its favourable chances, or to that, 
called mathematical probability of the event. If trials can be repeated 
infinitely many times, it will be physically impossible for those rates to 
differ from each other by a finite magnitude.  
    In this sense mathematical probability can be considered as 
measuring the possibility of an event or the facility of its production. 
Also in that sense it expresses a ratio existing beyond the mind 
perceiving it, a law to which the phenomena are subjected and whose 
existence does not depend on the extension or restriction of our 
knowledge about the circumstances of the production of phenomena. 
    240/4. If, in the state of imperfect knowledge we have no reason to 
suppose that some combination will arrive rather than another one, 
although in reality they can be connected with so many events possibly 
having unequal mathematical probabilities or possibilities. And if we 
understand the probability of an event as the ratio of the number of 
favourable combinations to the number of all equally ranked 
combinations, that probability, lacking anything better, can also be 
applied for fixing the conditions of a bet or of some random business 
deal, but it will not anymore express a ratio really and objectively 
existing between things.  
    It will acquire a purely subjective essence possibly varying from one 
individual to another according to the measure of their knowledge. If 
only we desire to avoid confusion and error whether in elucidating 
theory or in applying it, nothing will be more important than a 
thorough separation of the double meaning of the term probability 
sometimes understood in an objective and sometimes in a subjective 
sense.  
    240/5. Mathematical probability taken objectively is understood as 
measuring the possibility of events produced by coinciding 
independent causes. In general, when discussing natural events, 
physical and moral, it can only be determined by experience. If the 
number of trials of the same randomness increases to infinity, it will be 
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determined exactly with a certitude comparable to that of an event 
whose contrary is physically impossible. When the number of the trials 
is only very large, the probability will only be approximate but we will 
still be authorized to regard as extremely unlikely a considerable 
difference between its real value and the value derived from 
observations. In other words, when equating the observed and the real 
values we will be very rarely considerably mistaken. 
    240/6. If the number of trials is small the usual formulas for 
evaluating probabilities by experience will become illusory, they will 
only indicate subjective probabilities proper for regulating the 
conditions of a bet but inapplicable to the production of natural 
phenomena. 
    240/7. We should not however conclude from the previous remark 
that for providing with sufficient exactitude and sufficient likelihood 
the real values of probabilities of events the number of trials always 
ought to be very large. Such likelihood is nevertheless not the same as 
an objective probability. We can not assign a chance of being in the 
right when pronouncing that the real value is contained within 
determined limits. In other words, we can not assign the rate of 
mistaken judgements made in similar circumstances. 
    240/8. Independently from mathematical probability understood in 
the two senses discussed above there are probabilities not reducible to 
enumeration of chances. For us, they substantiate many judgements 
including those most important, they are largely based on our idea 
about the simplicity of the laws of nature, of order and rational 
connections between phenomena and they can be called philosophical 
probabilities10.  
    All reasonable people have an obscure feeling about these 
probabilities. When it becomes distinct or is applied to delicate 
subjects, it only belongs to cultivated intelligence or it can even 
constitute an attribute of a genius. It provides a foundation for a 
system of philosophical criticism vaguely felt in the most ancient 
schools which suppressed or reconciled scepticism and dogmatism [?], 
but under the threat of strange corruption it [certainly not the feeling 
but philosophical probability] can not be included in the field of the 
applications of mathematical probability. 
 

Notes 
    1. A few lines below Cournot refuted himself. 
    2. Poisson (1837, §§ 63 – 64) was of the same opinion. [B. B.] 
    3. Cournot many times applies the word criticism likely meaning discussion. 
    4. Cournot is discussing the Titius − Bode law which remained topical at least 
until recently and about which contradictory opinions have been formulated, see 
Nieto (1972). Gauss thought that the observed regularity was only coincidental and 
claimed that he was the first who noted Mercury’s anomaly (Sheynin 1984, pp. 153 – 
155). 
    5. The perihelion and aphelion distances of a planet from the Sun (a few lines 
below) are the distances when it intersects the appropriate ends of its major axis, and 
the limits of eccentricities (a most unusual term) are apparently connected with these 
distances. Bru noted that Cournot had used the same expression previously. 
    6. Notably Kepler whom Cournot mentioned later. [B. B.] 
    7. On induction and simplicity of laws see Laplace (1814/1995, pp. 112 – 113), 
also Boole and Mill. [B. B.] 
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    8. Astrologers call remarkable arrangements of the Sun, the Moon and the planets 
aspects, and here again the same question is essential: which arrangements are 
remarkable? Being an astrologer, Kepler (1601/1997, § 38, p. 97) added three 
aspects to the five recognized by the ancient astrologers.  
    9. Physical impossibility is contrary to moral certainty which was introduced 
much earlier, see Note by Translator. See also §§ 43 and 233.  
    10. In § 233 Cournot noted that philosophical probabilities are subjective. 
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