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    This, now slightly revised text, is intended for a broader circle of readers. It  
appeared in Italian, although with suppressed references, as 
 
    Lo sviluppo della teoria della probabilità e della statistica in Storia della 

Scienza, t. 6. Roma, Ist. Enc. Ital., 2002, pp. 529 – 541  
 
    Contrary to the official agreement, the original English version was not 
published. 
 
    1. Introduction 
    The theory of probability can be traced back to 1654 when Pascal and 
Fermat, in solving the problem of points (of sharing the stakes in an 
uncompleted series of games of chance), indirectly introduced the notion of 
expected gain (of the expectation of a random variable). In 1657, Huygens 
published the first treatise on probability. There, he applied the new notion 
(although not its present term) for studying games of chance. His materials of 
1669, which remained unknown during his lifetime, included solutions of 
stochastic problems in mortality. Later, in 1690, following Descartes, he 
stated that natural sciences only provided morally certain (highly probable) 
deductions. 
    Moral certainty and the application of statistical probability were discussed 
in in philosophical literature (Arnauld & Nicole 1662) which influenced 
Jakob Bernoulli, the future cofounder of probability theory (§2). Petty and 
Graunt, in the mid-17th century, created political arithmetic whose most 
interesting problems concerned statistics of population and its regularities. 
Having extremely imperfect data, the latter was nevertheless able to compile 
the first mortality table and to study medical statistics. In 1694 Halley 
calculated the second and much better table and laid the foundation of 
stochastic calculations in actuarial science. Newton applied stochastic 
reasoning to correct the chronology of ancient kingdoms, and, in a manuscript 
written between 1664 and 1666, invented a simple mind experiment to show 
that the then yet unknown geometric probability was capable of treating 
irrational proportions of chances. 
    2. The First Limit Theorem 
    Jakob Bernoulli blazed a new trail in probability. His Ars Conjectandi 

posthumously published in 1713 contained a reprint of Huygens’ treatise with 
essential comment; a study of combinatorial analysis; solutions of problems 
concerning games of chance; and an unfinished part where he provided (but 
had not applied) a definition of theoretical probability, attempted to create a 
calculus of stochastic propositions, and proved his immortal theorem. 
    Here it is. Bernoulli considered a series of Bernoulli trials, of ν = (r + s)n 

independent trials in each of which the studied event A occurred with 
probability p = r/(r + s). If the number of such occurrences is µ, then, as he 
proved, 
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where c was arbitrary and ν ≥  8226 + 5758 lgc. It followed that 
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    Bernoulli thus offered the (weak) law of large numbers and established the 
parity between the theoretical probability p and its statistical counterpart µ/ν. 
Given a large number of observations, the second provided moral certainty 
and was therefore not worse than the first. To paraphrase him: He strove to 
discover whether the limit (1) existed and whether it was indeed unity rather 
than a lesser positive number. The latter would have meant that induction 
(from the ν trials) was inferior to deduction! The application of stochastic 
reasoning well beyond the narrow province of games of chance, sufficiently 
serviced by the theoretical probability, was now justified, at least for the 
Bernoulli trials. 
    3. Montmort 
    His treatise on games of chance (1708) unquestionably influenced De 

Moivre. Unlike Huygens’ first attempt (§1), his contribution was a lengthy 
book rich in solutions of many old and new problems. One of the former, 
which Galileo solved in a particular case by simple combinatorial formulas, 
was to determine the chances of throwing k points with n dice, each of them 
having f faces (alternatively: having differing number of faces). In this 
connection Montmort offered a statement that can now be described by the 
formula of inclusion and exclusion: For events A1, A1, ..., An, 
 
    P (∑ Ai) = ∑P(Ai) – ∑P(Ai Aj) + ∑P(Ai Aj Ak) – … 
 
where i, j, k, … = 1, 2, …, n, i < j, i < j < k, … This formula is a stochastic 
corollary of the appropriate general proposition about sets A1, A2, …, An 
overlapping each other in whichever way. For f = Const = 6 (say), the problem 
stated above is tantamount to determining the probability that the sum of n 
mutually independent random variables taking equally probable values 1, 2, 
…, 5, 6 equals k. 
    In 1713 Montmort also inserted his extremely important correspondence 
with Niklaus Bernoulli. One of the topics discussed by them in 1711 – 1713 
was a strategic game (her), – a game depending both on chance and the 
decisions made. A theory of such games was only developed in the 20th 
century. For other subjects of their letters see §§6 and 10.2. 
    4. De Moivre 
    His main contribution was the Doctrine of Chances, where, beginning with 
its second edition, he incorporated his derivation of the De Moivre – Laplace 
limited theorem privately printed in 1733 but accomplished by him a dozen 

years or more earlier. And his memoir of 1712, which appeared before Jakob 
Bernoulli’s posthumously published Ars Conjectandi did, can be considered 
as its preliminary version. It was there that he introduced the classical 
definition of probability, usually attributed to Laplace.  
    The Doctrine was written for non-mathematical readers. It provided 
solutions of many problems in games of chance but did not concentrate on 
scientific topics, and the proofs of many propositions were lacking. 
Nevertheless, this book contained extremely important findings, see below 



and §10.1, and both Lagrange and Laplace thought of translating it into 
French, see Lagrange’s letter to Laplace of 30.12.1776 in t. 14 of his Oeuvres. 
    I describe now the theorem mentioned above. Desiring to determine the law 
underlying the ratio of the births of the two sexes (§6), De Moivre proved that 
for n Bernoulli trials with probability of success p, the number of successes µ 
obeyed the limiting law 
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with q = 1 – p. Note that np = Eµ and npq = varµ, the expectation and 
variance of µ (the second notion is essentially due to Gauss).The convergence 
implied in (2) is uniform with respect to a and b, but, again, this is a concept 
introduced in the 19th century. When deriving his formula, De Moivre widely 
used expansions of functions into power series (sometimes into divergent 
series calculating the sums of several of their first terms). 
    Thus appeared the normal distribution. De Moivre proved (2) for the case 
of p = q (in his notation, a = b) and correctly stated that his formula can easily 
be generalized to p ≠ q; furthermore, the title of his study included the words 
binomial (a + b) n expanded … He had not however remarked that the error of 
applying his formula for finite values of n increased with the decrease of p (or 
q) from 1/2 , or, in general, had not studied the rapidity of the convergence in 
(2). 
    In following the post-Newtonian tradition, De Moivre did not use the 
symbol of integration; his English language was not generally known on the 
Continent; Laplace (1814) most approvingly mentioned his formula but had 
not provided an exact reference or even stated clearly enough his result; and 
Todhunter (1865), the best pertinent source of the 19th century, superficially 
described his finding. No wonder that for about 150 years hardly any 
Continental author noticed De Moivre’s theorem. In 1812, Laplace proved the 
same proposition (hence its name introduced by Markov) by means of the 
McLaurin – Euler summation formula and provided a correction term which 
allowed for the finiteness of the number of trials. 
    Scientific demands led to the studying of new types of random variables 
whose laws of distribution did not coincide with Jakob Bernoulli’s and De 
Moivre’s binomial law. Nevertheless, the convergence of the sums of these 
variables to the normal law persisted under very general conditions and this 
fact is the essence of the central limit theorem of which (2) is the simplest 
form. 
    5. Bayes 
    His fundamental posthumous memoir of 1764 was communicated and 
commented on by Price. Bayes’ converse problem, as Price called it, was to 
determine the unknown theoretical probability of an event given the statistical 
probability of its occurrence in Bernoulli trials. Here, in essence, is his 
reasoning. A ball falls α + β = n times on a segment AB of unit length so that 
its positions on AB are equally probable and c is somewhere on AB with all its 
positions also equally probable; α times the ball falls to the left of c (α 
successes) and β times, to the right (β failures; statistical probability of 
success, α/n). It is required to specify point c. For any [a; b] belonging to AB 
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    This is the posterior distribution of c given its prior uniform distribution 
with the latter representing our prior ignorance. The letter x in (3) also stands 
for the unknown Ac which takes a new value with each additional trial. At 
present we know that 
 
    P = Ib(α + 1; β + 1) – Ia(α + 1; β + 1) 
 
where I is the symbol of the incomplete Beta function. The denominator of 
(3), as Bayes easily found out, was (the complete Beta function times the 
factor α

nC ) the probability 

 
    P (The number of successes = α irrespective of Ac) = 1/(n + 1) 
 
for any acceptable value of α. Even up to the 1930’s the estimation of the 
numerator for large values of α and β had been extremely difficult and some 
commentators believe that Bayes did not publish his memoir himself because 
he was dissatisfied with his efforts in this direction. 
    Anyway, it seems that he had not rested content with limiting relations 
since they were not directly applicable to the case of finite values of n (at least 
Price said so with regard to the work of De Moivre). However, Timerding, in 
his translation of the Bayes memoir into German (1908), proved that the 
latter’s calculations could have led to 
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where, as I myself note, α/n = Ex and αβ/n3 = var x. 
    It is remarkable that Bayes, who (just like De Moivre) certainly had not 
known anything about variances, was apparently able to perceive that an 
elementary and formal transformation of the left side of (2) leading to 
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would not have provided the proper answer to his problem. Both Jakob 
Bernoulli, and De Moivre mistakenly thought that they had solved the inverse 
problem as well just by solving the direct problem.  
    Only Bayes correctly perceived the proper relation between the statistical 
and theoretical probabilities and thus completed the first version of the theory 
of probability. Mises, who postulated that the theoretical probability of an 
event is the limit of the statistical probability of its occurrence, could have 
referred to Bayes; moreover, in various applications of probability this Mises 
conception is inevitably made use of, but the references could be and even 
should be made to Bayes as well!  
    On another level, Bayes’ main result was, that, given a random variable 
with a superficially known distribution, it is possible to specify it by means of 



observation. Thus, all possible positions of c on AB were thought to be equally 
possible, but the n trials led to distribution (3).  
    Price provided an example which presumed complete previous ignorance: 
Sunrise had been observed a million times in succession; how probable 
becomes the next sunrise? According to formula (3) with a = 1/2, b = 1, α = 
106 and β = 0, he found that the odds of success were as the millionth power 
of 2 to one. 
    Just as it was with De Moivre (§4), Continental mathematicians were 
hindered from studying the Bayes memoir by his English language and his 
failure to interpret his subtle reasoning, see Gillies (1987), who discusses the 
recent debates (and reasonably describes Price’s own contribution). 
    Let incompatible events A1, A2, …, An, have probabilities P(Ai) before an 
event B happens; suppose also that B occurs with one, and only one of the 
Ai’s, after which these events acquire new probabilities. Then 
 

    P(Ai/B) = P(B/Ai)P(Ai) ÷ ∑
=

n

j 1

[P(B/Aj) P(Aj)]. 

 
This is the so-called Bayes formula, see Cournot (1843, §88), nevertheless 
lacking in the Bayes memoir. However, in the discrete case it also describes 
the transition from prior probabilities to posterior. It was Laplace (1774) who 
had expressed it (in words only) and proved it later (1781, p. 414). 
    Laplace (1786) also extended the Bayes method by treating non-uniform 
prior distributions. And, without mentioning Bayes, he solved several 
problems leading to formulas of the type of (3). Best known is his calculation 
of the probability of the next sunrise already observed α times in succession. 
He (1814, p. 11 of the translation) stated, but did not prove, that this 
probability was (α + 1)/( α + 2) but the explanation is in one of his earlier 
memoirs (1781). In 1774 he began to consider relevant urn problems, and in 
1781 he went on to study the sex ratio at birth (also see §6). 
    An urn contains an infinite number of white and black balls. Drawings 
without replacement produced p white balls and q black ones; determine the 
probability that a white ball will be extracted next. Denote the unknown ratio 
of the number of white balls to all of them by x, then the obtained sample has 
probability 
x 

p(1 – x) q, and, since all values of x should be regarded as equally probable, 
the probability sought will be 
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Hence (if p = α and q = 0) the conclusion above. Note that the result obtained 
coincides with the expectation of a random variable with density 
 

    φ(x) = Cx 
p(1 – x) q, C = 1 ÷ ∫
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    Determine now the probability of drawing m white balls and n black ones in 
the next (m + n) extractions if these numbers are small as compared with p 
and q. This time making use of approximate calculations, Laplace got  
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and noticed that this was in agreement (as it should have been) with assuming 
that x ≈ p/(p + q).  
    Finally, also in 1774, Laplace proved that for an arbitrary α > 0 
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In 1781 he applied this result to state that, when issuing from extensive 
statistical data, the sex ratio at birth could be calculated as precisely as desired 
[provided that it remained constant!]. See §11 for still another related problem 
studied by Laplace. 
    The difference between the statistical and the theoretical values of such 
magnitudes as p/(p + q) could have also been estimated by means of the De 

Moivre – Laplace theorem; indeed, for p, q → ∞ the probabilities of 
extracting balls of the two colours remain constant even when they are not 
returned back into the urn. 
    6. Population Statistics 
    The fathers of political arithmetic (§1) had good grounds to doubt, as they 
really did, whether quantitative studies of population were necessary for 
anyone excepting the highest officials. Indeed, social programmes began 
appearing in the 1880’s (in Germany); before that, governments had only been 
interested in counting taxpayers and men able to carry arms. 
    A new study belonging to population statistics, the calculation of the sex 
ratio at birth, owed its origin and development to the general problem of 
isolating randomness from Divine design. Kepler and Newton achieved this 
aim with respect to inanimate nature, and scientists were quick to begin 
searching for the laws governing the movement of population. 
    In 1712 Arbuthnot put on record that during 82 years (1629 – 1710) more 
boys had been yearly christened in London than girls. Had the probability of a 
male birth been 1/2, he continued, the probability of the observed fact would 
have been 2–82, i.e., infinitesimal. He concluded that the predominance of male 
births was a Divine law which repaired the comparatively higher mortality of 
men. 
    Even now the divide between random and non-random sequences remains 
more than subtle, but at least Arbuthnot’s series m, m, m, … could not have 
been attributed to chance.  
    Nevertheless, his reasoning was feeble. Baptisms were not identical with 
births; Christians were perhaps somehow different from others, and London 
could have differed from the rest of the world; and, finally, the comparative 
mortality of the two sexes was unknown. A special point is that Arbuthnot 
only understood randomness in the sense of equal chances of a male and 
female birth whereas the supposed Divine law could have well been expressed 
by a general binomial distribution with p > 1/2. 



    De Moivre (§4) and Niklaus Bernoulli had developed Arbuthnot’s 
arguments. Here is the latter’s result which he formulated in a letter to 
Montmort of 1713. Denote the ratio of registered male births to those of 
females by m/f, the total yearly number of births by n, the corresponding 
number of boys by µ and set 
n/(m + f) = r, m/(m + f) = p, f/(m + f) = q, p + q = 1 and let s = 0(√n). Then 
Bernoulli’s derivation (Montmort 1708, pp. 388 – 394 in 1713) can be 
presented as follows: 
 
    P(|µ– rm| ≤ s) ≈ (t – 1)/t, t ≈ [1 + s (m + f)/mfr]s/2 ≈ exp[s2(m + f)2/2mfn], 

    P (|µ – rm| ≤ s) ≈ 1 – exp(s 
2/2pqn), P[|µ – np|/ npq ≤ s] ≈ 1 – exp(–s 

2/2). 

 
    The last formula means that Bernoulli indirectly, since he had not written it 
down, introduced the normal law as the limit of the binomial distribution 
much earlier than De Moivre (directly) did. However, his finding does not 
lead to an integral limit theorem since s should remain small as compared with 
n (see above), and neither is it a local theorem. 
    In the mid-18th century Achenwall created the Göttingen school of 
Staatswissenschaft (statecraft) which strove to describe the climate, 
geographical position, political structure and economics of given states and to 
estimate their population by means of data on births and deaths. In this context, 
the gulf between political arithmetic and statecraft was not therefore as wide 
as it is usually supposed to have been, and Leibniz’ manuscripts written in the 
1680’s indeed testify that he was both a political arithmetician and an early 
advocate of tabular description (with or without the use of numbers) of a 
given state. By the 19th century statecraft broke down because of the 
heterogeneity of its subject, whereas statistics, as we now know it, properly 
issued from political arithmetic. 
    The father of population statistics was Süssmilch. He collected vast data on 
the movement of population and attempted to prove Divine providence as 
manifested in every field of vital statistics. He treated his materials faultily; 
thus, he combined towns and villages without taking weighted means, and he 
had not tried to allow for the difference in the age structures of the populations 
involved. Nevertheless, his life tables remained in use well into the 19th 
century.  
    Euler actively participated in preparing the second edition (1765) of 
Süssmilch’s main work, the Göttliche Ordnung, and one of its chapters was 
partly reprinted in his Opera omnia. Later on Malthus, without any references, 
adopted their indirect conclusion that population increased in a geometric 
progression. Euler left several contributions on population statistics, now 
collected in his Opera omnia. With no censuses (as we understand them now) 
at his disposal, he was unable to recognize the importance of some 
demographic factors, but he introduced such concepts as increase in 
population, and the period of its doubling. He worked out the mathematical 
theory of mortality and formulated rules for establishing life insurance in all 
its forms, cf. §7 where I mention several previous scholars whom Euler had 
not cited.  
    During 1766 – 1771 Daniel Bernoulli contributed three memoirs to 
population statistics. In the first of these he examined the benefits of 
inoculation, – of communicating a mild form of smallpox from one person to 
another one, – which had been the only preventive measure against that 



deadly disease. The Jennerian vaccination became known at the turn of the 
18th century, whereas inoculation had been practised in Europe from the 
1720’s. This procedure was not safe: a small fraction of those inoculated were 
dying, and, in addition, all of them spread the disease among the population. 
    Bernoulli’s memoir was the first serious attempt to study it, but even he 
failed to allow properly for the second danger. He formulated (necessarily 
crude) statistical hypotheses on smallpox epidemics and calculated the 
increase in the mean duration of life caused by inoculation. Concluding that 
this treatment prolonged life by two years, he came out in its favour. In 1761, 
even before Bernoulli’s memoir had appeared, D’Alembert voiced reasonable 
objections. Not everyone, he argued, will agree to expose himself to a low risk 
of immediate death in exchange for a prospect of living two remote years 
longer. And there also existed the moral problem of inoculating children. In 
essence, he supported inoculation, but regarded its analysis impossible. 
    In his second memoir Bernoulli studied the duration of marriages, a 
problem directly connected with the insurance of joint lives. He based his 
reasoning on an appropriate problem of extracting strips of two different 
colours from an urn which he solved in the same year (in 1768). 
    Bernoulli devoted his third memoir of 1770 – 1771 to studying the sex ratio 
at birth. Supposing that male and female births were equally probable, he 
calculated the probability that out of 2N newly-born m were boys: 
  
    P = [1·3·5·…·(2N – 1)]  ÷  [2·4·6·…·2N] = q(N). 
 
    He calculated this fraction not by the Wallis formula or the local De 

Moivre – Laplace theorem, but by means of differential equations. After 
deriving  
q(N – 1) and q(N + 1) and the two appropriate values of ∆q, he obtained 
 
    dq/dN = – q/(2N + 2), dq/dN = – q/(2N – 1) 
 
and, “in the mean”, dq/dN = – q/(2N + 1/2). Assuming that the solution of this 
equation passed through point N = 12 and q(12) as defined above, he obtained 
 

    q = 1.12826/ 14 +N . 
 
Application of differential equations was Bernoulli’s usual method in 
probability. 
    Bernoulli also determined the probability of the birth of approximately m 
boys: 
 
    P(m = N ± µ) = q exp(– µ2/N) with µ = 0(√N).                                    (4) 
 
He then generalized his account to differing probabilities of the births of both 
sexes, and, issuing from some statistical data, compared two possible values 
of the sex ratio but had not made a definite choice. 
    A special feature of this memoir is that Bernoulli determined such a value 
of µ that the total probability (4) from µ = 0 to this value (µ = 47) was 1/2. He 
calculated this total by summing rather than by integration and thus failed to 
obtain directly the De Moivre – Laplace theorem (2).  



    In 1772 Lambert followed Daniel Bernoulli in studying population 
statistics. He offered an empirical law of mortality, examined the number of 
children in families and somewhat extended Bernoulli’s memoir on smallpox 
by considering children’s mortality from this disease. Before treating the 
second-mentioned subject, Lambert increased the number of children by 1/2 
thus apparently allowing for stillbirths and infant mortality. This rate of 
increase was arbitrary, but at least he attempted to get rid of a gross systematic 
mistake. Along with Bernoulli and Euler he created the methodology of 
mathematical demography. 
    7. Civil Life; Moral and Economic Issues 
    Jakob Bernoulli thought of applying probability to civil life and moral and 
economic affairs, but he did not have time to accomplish much in this 
direction. One aspect of civil life, i. e., games of chance, had indeed promoted 
the origin of the theory of probability (§1) and offered meaningful problems 
whose solutions became applicable in natural sciences and led to the creation 
of new mathematical tools used also in probability (§10.1). I shall now discuss 
other pertinent points. 
    In 1709, Niklaus Bernoulli published a dissertation on applying the art of 

conjecturing to jurisprudence, and, it ought to be added, he plagiarized Jakob 
Bernoulli by borrowing from his as yet unpublished classical book of 1713 
and even from his Meditationes (Diary) never meant for publication. Niklaus 
repeatedly mentioned his late uncle, which does not exonerate him. 
    Niklaus recommended the use of mean longevity and mean gain (or loss) in 
calculations concerning annuities, marine insurance, lotteries And in deciding 
whether an absent person ought to be declared dead both he and Jakob were 
prepared to weigh the appropriate probabilities against each other. Mentality 
really changed since the time when Kepler correctly, but in a restricted way, 
had simply refused to say whether the absent man was alive or dead. 
    In connection with a problem in mortality (and, therefore, life insurance) 
Niklaus effectively introduced the continuous uniform distribution which was 
the first continuous law to appear in probability. Important theoretical work 
inspired by life insurance was going on from 1724 (De Moivre) onward 
(Thomas Simpson). Actually, insurance societies date back to the beginning 
of the 18th century, but more or less honest business, based on statistics of 
mortality, hardly superseded downright cheating before the second half of the 
19th century. And, although governments sold annuities even in the 17th 
century, their price had then been largely independent from statistical data. 
    Stochastic studies of judicial decisions, of the voting procedures adopted by 
assemblies and at general elections, had begun in the late 18th century, but 
many later scientists denied any possibility of numerically examining these 
subjects. Thus, probability, misapplied to jurisprudence, had become “the real 
opprobrium of mathematics” (Mill 1886, p. 353); or, in law courts people act 
like the “moutons de Panurge” (Poincaré 1912, p. 20). 
    So, is it possible to determine the optimal number of jurors, or the optimal 
majority of their votes (when a wrong decision becomes hardly possible)? To 
determine the probability of an extraordinary fact observed by witnesses? 
Condorcet studied these and similar problems although hardly successfully. 
First, it was difficult to follow his exposition, and, second, he had not made 
clear that his attempt was only tentative, that he only meant to show what 
could be expected in the ideal case of independent decisions being made. But 
at least he emphasized that les hommes should be educated and unprejudiced.  



    Laplace followed suit declaring that the representation of the nation should 
be the élite of men of exact and educated minds. Later he (1816, p. 523) 
remarked, although only once and in passing, that his studies were based on 
the assumption that the jurors acted independently one from another.  
    One of Condorcet’s simple formulas (which can be traced to Jakob 

Bernoulli’s study of stochastic arguments in his Ars Conjectandi and which 
Laplace also applied in 1812) pertained to extraordinary events (above). If the 
probabilities of the event in itself and of the trustworthiness of the report are 
p1 and p2, then the event acquires probability 
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This formula is however hardly applicable. Indeed, for p1 = 1/10,000 and p2 = 
0.99, P ≈ 0.01 so that the event will not be acknowledged by a law court, and 
a second trustworthy witness will have to be found. 
    Moral applications of probability at least emphasized the importance of 
criminal statistics and assisted in evaluating possible changes in the 
established order of legal proceedings. As Gauss correctly remarked in 1841, 
the appropriate studies were unable to help in individual cases, but could have 
offered a clue to the lawgiver for determining the number of witnesses and 
jurors. 
    Applications of probability to economics began in 1738 with Daniel 

Bernoulli. In attempting to solve the Petersburg paradox (§10.2), he assumed 
that the advantage (y) of a gambler was connected with his gain (x) by a 
differential equation (likely the first such equation in probability theory) 
 
    y = f(x) = c ln(x/a) 
 
where a was the initial fortune of the gambler. Bernoulli then suggested that 
the moral expectation of gain, be chosen instead of its usual expectation, 
 
    ∑pi f(xi)/∑pi instead of ∑pi xi /∑pi; 
 
the pi’s were the probabilities of the respective possible gains. 
    The distinction made between gain and advantage enabled Bernoulli to 
replace the infinite expectation (10) appearing in a paradoxical situation by a 
new expression which was finite and thus to get rid of the paradox, see §10.2. 
Neither did he fail to notice that, according to his innovation, a fair game of 
chance became detrimental to both gamblers. 
    Bernoulli next applied moral expectation to studying the shipping of freight 
and stated that (in accordance with common sense) it was beneficial to carry 
the goods on several ships. He did not prove this statement (which was done 
by Laplace). 
    Moral expectation became fashionable and Laplace (1812, p. 189) therefore 
qualified the classical expectation by the adjective mathematical. Nowadays, 
it is still used in the French and Russian literature. In 1888 Bertrand declared 
that the theory of moral expectation had become classical but remained 
useless. However, already then economists began developing the theory of 
marginal utility by issuing from Bernoulli’s fruitful idea. 



    The term moral expectation is due to Gabriel Cramer who had expressed 
thoughts similar to those of Daniel Bernoulli and the latter published a 
passage from his pertinent letter of 1732 to Niklaus Bernoulli. 
    8. The Theory of Errors 
    8.1. The Main problem. Suppose that m unknown magnitudes x, y, z, … 
are connected by a redundant system of n physically independent equations  
(m < n) 
 
    ai x + bi y + ci z + … + si = 0                                                          (5) 
 
whose coefficients are given by the appropriate theory and the free terms are 
measured. The approximate values of x, y, z, … were usually known, hence the 
linearity of (5). The equations are linearly independent (a later notion), so that 
the system is inconsistent (which was perfectly well understood). Nevertheless, 
a solution had to be chosen, and it was done in such a way that the residual free 
terms (call them vi) were small enough. 
    The case of direct measurements (m = 1) should be isolated. Given, 
observations s1, s2, …, sn of an unknown constant x (here, ai = 1); determine its 
true value. The choice of the arithmetic mean seems obvious and there is 
evidence that such was the general rule at least since the early 17th century. 
True, ancient astronomers treated their observations in an arbitrary manner and 
in this sense even astronomy then had not yet been a quantitative science. 
However, since errors of observations were large, the absence of established 
rules can be justified. Thus, for bad distributions of the errors the arithmetic 
mean is not stochastically better (or even worse) than a single observation. 
   In 1722, Cotes’ posthumous contribution appeared. There, he stated that the 
arithmetic mean ought to be chosen, but he had not justified his advice, nor did 
he formulate it clearly enough. Then, in 1826, Fourier had defined the veritable 

object of study as the limit of the arithmetic mean as the number of observations 
increased indefinitely, and many later authors including Mises, independently 
one from another and never mentioning Fourier, introduced the same definition 
for the true value.  
    The classical problem that led to systems (5) was the determination of the 
figure of the Earth. Since Newton had theoretically discovered that our planet 
was an ellipsoid of rotation with its equatorial radius (a) larger than its polar 
radius (b), numerous attempts were made to prove (or disprove) this theory. In 
principle, two meridian arc measurements were sufficient for an experimental 
check (for deriving a and b), but many more had to be made because of the 
unavoidable errors of geodetic and astronomical observations (and local 
deviations from the general figure of the Earth). 
    At present, the adopted values are roughly a = 6,378.1 km and b = 6,356.8 
km. That 2π ·6,356.8 = 39,941 which is close to 40,000 is no coincidence: in 
1791, the meter was defined as being 1/107 of a quarter of the Paris meridian. 
This natural standard of length lasted until 1872 when the meter of the Archives 
(called for the place it was kept in), a platinum bar, was adopted instead. From 
1960, the meter is being defined in terms of the length of a light wave. The 
introduction of the metric system as well as purely astronomical problems had 
necessitated new observations so that systems (5) had to be solved time and 
time again, whereas physics and chemistry began presenting their own demands 
by the mid-19th century. 



    8.2. Its Solution. Since the early 19th century the usual condition for solving 
(5) was that of least squares 
 
    v1

2
 + v2

2
 + … + vn

2
 = min. 

 
Until then, several other methods were employed. Thus, for m = 2 the system 
was broken up into all possible subsystems of two equations each, and the mean 
value of each unknown over all the subsystems was then calculated. As 
discovered in the 19th century, the least-squares solution of (5) was actually 
some weighted mean of these partial solutions. 
    The second important method of treating systems (5) devised by Boscovich 

consisted in applying conditions 
 
    v1 + v2 + … + vn = 0, |v1|+ |v2|+ … + |vn| = min                                (6a, 6b) 
 
(Maire & Boscovich 1770, p. 501). Now, (6a) can be disposed of by summing 
up all the equations in (5) and eliminating one unknown. And, as Gauss noted 
in 1809, (6b) led exactly to m zero residuals vi, which follows from an 
important theorem in the then not yet known linear programming. In other 
words, after allowing for restriction (6a), only (m – 1) equations out of n need 
to be solved, but the problem of properly choosing these still remained. 
Boscovich himself applied his method for adjusting meridian arc 
measurements and he chose the proper equations by a geometric trick. Then, 
Laplace repeatedly applied the Boscovich method for the same purpose, for 
example, in vol. 2 of his Mécanique céleste (1799). 
    A special condition for solving systems (5) was |vmax| = min, the minimax 
principle. Kepler might have well made his celebrated statement about being 
unable to fit the Tychonian observations to the Ptolemaic theory after having 
attempted to apply this principle (in a general setting rather than to linear 
algebraic equations). In 1749, Euler achieved some success in employing its 
rudiments. The principle is not supported by stochastic considerations, but it 
has its place in decision theory and Laplace (1789, p. 506) clearly stated that it 
was suited for checking hypotheses (cf. Kepler’s possible attitude above) 
although not for adjusting observations. Indeed, if even this principle does not 
achieve a concordance between theory and observation, then either the 
observations are bad, or the theory wrong.  
    8.3. Simpson. I return now to the adjustment of direct observations. In 1756 
Simpson proved that at least sometimes the arithmetic mean was more 
advantageous than a single observation. He considered the uniform, and the 
triangular distributions for the discrete case. After calculating the error of the 
mean he recommended the use of this estimator of the true value of the 
constant sought. Simpson thus extended stochastic considerations to a new 
domain and effectively introduced random observational errors, i. e. errors 
taking a set of values with corresponding probabilities. His mathematical tool 
was the generating function introduced by De Moivre in 1730 for calculating 
the chances of throwing a certain number of points with a given number of 
dice. De Moivre first published the solution of that problem without proof in 
1712, somewhat earlier than Montmort (§3) who employed another method. 
    For that matter, no doubt following De Moivre, Simpson himself had earlier 
(1740) described the same calculations, and he now noted the similarity of 
both problems. Consider for example his triangular distribution with errors 



 
    – v, …, – 2, – 1, 0, 1, 2, …, v                                                            (7) 
 
having probabilities proportional to 
 
    1, …, (v – 2), (v – 1), v, (v – 1), (v – 2), …, 1.  
 
    Simpson’s (still unnamed) generating function was here 
 
    f (r) = r 

–v + 2r 
–v+1 + … + (v + 1) r 0 + … + 2r

 v–1 + r 
v 

 
and the chance that the sum of t errors equalled m was the coefficient of rm in 
f 

t
 (r). 

    In 1757 Simpson went on to the continuous triangular distribution by 
introducing a change of scale: the intervals between integers (7) now tended to 
zero so that it became possible to regard the segment [– v; v] as consisting of 
an infinitely large number of such intervals, and the distribution, as though 
given on a continuous set. 
    In 1776 Lagrange extended Simpson’s memoir to other (purely academic) 
distributions. He introduced integral transformations, managed to apply 
generating functions to continuous distributions and achieved other general 
findings. 
    8.4. Lambert. Let φ(x; x̂ ) with unknown parameter x̂  be the density law 
of independent observational errors x1, x2, …, xn. Then the value of 
 
    φ(x1; x̂ ) ·φ(x2; x̂ ) … ·φ(xn; x̂ )                                                        (8) 
 
will correspond to the probability of obtaining such observations. Hence the 
maximal value of (8) will provide the best value of x̂ . Now suppose, as it was 
always done in classical error theory, that the density is φ(x – x̂ ), a curve with 
a single peak (mode) at point x = x̂ . The determination of the true value of the 
constant sought may then be replaced by calculation of the most probable 
value of x̂ . The derivation of the unknown parameter(s) of density laws 
became an important problem of statistics, and the principle of maximum 
likelihood (of maximizing the product (8)) provides its possible solution. 
    It was Lambert who first formulated this principle for unimodal densities in 
1760. Actually, he studied the most important aspects of treating observations. 
He returned to this subject in 1765, this time attempting to determine the 
density of pointing a geodetic instrument by starting from the principle of 
insufficient reason (the term was introduces later) and to estimate numerically 
the precision of observations. 
    At the end of the 19th century the just mentioned principle was applied to 
substantiate the existence of equally possible cases appearing in the 
formulation of the notion of probability and soon afterwards Poincaré 
managed to soften essentially this delicate issue. In actual fact, the very notion 
of expectation, if not understood as an abstract concept (which it really is), 
can hardly be justified in any other way excepting insufficient reason.  
    Lambert (1765, §321) also defined the Theorie der Fehler including into its 
province both the stochastic and the deterministic studies of errors. Bessel had 
picked up this term, Theory of errors, and, although neither Laplace, nor 
Gauss ever applied it, it came in vogue in the mid-19th century. 



    A classical example of the deterministic branch of the error theory is Cotes’ 
solution (1722) of 28 problems connecting the differentials of the various 
elements of plane and spherical triangles with each other. He thus enabled to 
calculate the effect of observational errors on indirectly determined sides of 
the triangles. 
    8.5. Daniel Bernoulli. In 1778, Daniel Bernoulli denied the arithmetic 
mean and, without mentioning Lambert, advocated the principle of maximum 
likelihood. Taking a curve of the second degree as the density law of the 
observational errors, and examining the case of only three observations, he 
obtained an algebraic equation of the fifth degree in x̂ , the estimator of the 
constant sought. 
    In a companion commentary, Euler reasonably denounced the principle of 
maximum likelihood since in the presence of an outlying observation the 
product (8) becomes small, and, in addition, contrary to common sense, the 
decision of whether to leave or reject it becomes important. Then, 
nevertheless following Bernoulli but misinterpreting him, he derived a cubic 
equation in x̂  and noted that it corresponded to the maximal value of the sum 
of the squares of the weights of the observations. If the small terms of this 
sum are rejected, his condition becomes 
 
    ( x̂  – x1)

2 + ( x̂  – x2)
2 + + … + ( x̂  – xn)

2 = min                                        (9) 
 
which leads to the arithmetic mean, still alive and kicking! 
    Heuristically, (9) resembles the condition of least squares (and, indeed, in 
case of m = 1 least squares lead to this mean). Furthermore, Gauss, in 1823, in 
his definitive formulation of this celebrated method, derived it from the 
principle of maximum weight which might, again heuristically, be compared 
with Euler’s condition (9). 
    Finally, in 1780 Bernoulli considered pendulum observations. Drawing on 
his previous memoir, he applied formula (4), i. e., the normal law, for 
calculating the error of time-keeping accumulated during 24 hours. He then 
isolated random (momentanearum) errors, whose influence was proportional 
to the square root of the appropriate time interval, from systematic 
(chronicarum), almost constant mistakes. These two categories are still with 
us, but his definitions are not. 
    8.6. Laplace. Laplace’s main achievements in error theory belong to the 
19th century. Before that, he published two memoirs (1774; 1781) bearing on 
this subject and interesting from the modern point of view but hardly useful 
from the practical side. Thus, he introduced, without due justification, two 
academic density curves. Already then, in 1781, Laplace offered his main 
condition for adjusting direct observations: the sum of errors to be feared of 
multiplied by their probabilities (i. e., the absolute expectation of error) should 
be minimal. In the 19th century, he applied the same principle for justifying 
the method of least squares, which was only possible for the case of normal 
distribution (existing on the strength of his non-rigorous proof of the central 
limit theorem when the number of observations was large).  
    Also in 1781, Laplace proposed, as a density curve,  
 
    φ(αx) = 0, x = ∞; φ(αx) = q ≠ 0, x ≠ ∞, α → 0. 
 



His deliberations might be described by the Dirac delta-function. However, 
one of his conclusions was based on considering an integral of 
 
    φ [α(x – x1)] ·φ [α(x – x2)] … ·φ [α(x – xn)]  
 
(where the xi’s were the observations made) which has no meaning in the 
language of generalized functions. 
    From its very beginning, the theory of errors belonged to probability theory 
(Simpson), but its principles of adjusting observations (of maximal 
likelihood; of least absolute expectation; of least squares) had been 
subsequently taken over by statistics. 
    9. Laplace’s Determinism 
    According to Laplace’s celebrated utterance (1814/1995, p. 2), for an 
omniscient intelligence “nothing would be uncertain, and the future, like the 
past, would be open to its eyes”. He did not say that initial conditions could 
not be known precisely and of course he did not know anything about 
instability of motion (Poincaré) or about modern ideas on the part of 
randomness (or chaos) in mechanics. 
    Already in the beginning of his career he (1776, p. 145) denied randomness 
(“Le hasard n’a … aucune réalité en lui-même”) but remarked that “le plus 
grand nombre des phénomènes” could only be studied stochastically and 
attributed the emergence of the “science des hasards ou des probabilités” to 
the feebleness of the mind. The real cause for the origin of probability was 
rather the existence of stochastic laws determining the behaviour of sums (or 
other functions) of random variables; or, the dialectical interrelation between 
the randomness of a single event and the necessity provided by mass random 
phenomena. 
    A case in point is the statistical determinism. Thus, in 1819 Laplace noticed 
that the receipts from the Lottery of France had been stable. Elsewhere, he 
(1795/1812, p. 162) remarked that the same was true with regard to the yearly 
number of dead letters. The generally known statement about the figures of 

moral statistics (of marriages, suicides, crimes) is due to Quetelet. Owing to 
his careless formulation it is hardly known that he actually meant stability 
under constant social conditions. 
    Two additional points are worth stating. First, nobody ever claimed that 
Laplace’s philosophy had hindered his studies in astronomy or population 
statistics (based on stochastic examination of observations, see §11). 
Moreover, he (1796, p. 504) effectively recognized randomness when 
discussing the eccentricities of planetary orbits and other small deviations 
from “une parfaite régularité”. 
    Second, belief in determinism and actual recognition of randomness did not 
begin with Laplace. Kepler denounced chance as an abuse of God, but he had 
to explain the eccentricities by random causes. Laplace (and Kant) likely 
borrowed this idea from him, or from Newton (1718/1782, Query 31, p. 262) 
who actually recognized randomness as Kepler did: The “wonderful 
uniformity in the planetary orbits” was accompanied by “inconsiderable 
irregularities … which may have risen from the mutual actions of comets and 
planets upon one another”. Finally, Laplace might have found his statement 
about the omniscient intelligence in earlier literature (Maupertuis 1756, p. 
300; Boscovich 1758, §§384 – 385). 
    10. Some Remarkable Problems 



    10.1. The Gambler’s Ruin. A series of games of chance is played by A and 
B until one of them is ruined. How long can the series be? What is the 
probability that A (or B) will be ruined not more than in n games? These are 
some questions here. In its simplest form the problem of ruin is due to 
Huygens. 
    Suppose that A has a counters, the probability of his winning a game is p, 
and the respective magnitudes for B are b and q (p + q = 1). Call Pa the 
probability of A’s loosing all his counters before winning all those belonging 
to B, let Pan be the probability of his ruin in not more than n games and denote 
the respective magnitudes for B by Pb and Pbn. The entire game can be 
imagined as a movement of a point C along a segment of length (a + b), up to 
b units to the left and up to a units to the right. After each game C jumps to the 
left with probability p or to the right with probability q, and the play ends 
when C arrives at either end of the segment. Between these barriers C will 
walk randomly. And a random walk (which can also be imagined in a three-
dimensional space) is a crude model of diffusion and Brownian motion.  
    Jakob Bernoulli several times treated this problem either incompletely 
(like Huygens did) or leaving the proof of his formula to his readers. It was 

De Moivre, who already in 1712 proved the same formula by an ingenious 
reasoning. He established that 
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He also offered rules for calculating either the probability (Pan + Pbn) that the 
play will end within n games or the probabilities Pan and Pbn separately, and, 
in addition, he considered the case of a = ∞. De Moivre extended his 
research: in 1718 he provided answers to other problems although without 
justifying the results obtained. The demonstrations are now reconstructed 
(Hald 1990, §20.5). 
    De Moivre’s later findings were especially important because of the new 
method which he devised and applied here, the method of recurring 
sequences. Laplace discussed the problem of the gambler’s ruin in several 
memoirs. He (1776) solved it by means of partial difference equations even 
for the case of three gamblers. Lagrange devoted the last section of his 
memoir of 1777 on these equations to their application in probability. There, 
he solved several problems which, in particular, were concerned with the 
gambler’s ruin. 
    10.2. The Petersburg Paradox. In a letter to Montmort of 1713 Niklaus 

Bernoulli described his invented game (Montmort 1713, p. 402). A gives B an 
écu if he throws a six at the first attempt with a common die; he also promises 
2, 4, 8, … écus if the six first appears at the second, the third, the fourth, … 
throw. Required is the expectation of B’s gain (call it Eξ). The conditions, but 
not the essence of the problem soon changed with a coin replacing the die. In 
this new setting 
 
    Eξ = 1 ·1/2 + 2 ·1/4 + 4 ·1/8 + … = ∞                                              (10) 
 



whereas no reasonable man would have given much in exchange for a 
promised Eξ. This remarkable paradox has been discussed to this very day; 
here are the pertinent points. 
    a) It introduced a random variable with an infinite expectation. 
    b) It inspired scholars to emphasize that a low probability of gain (lower 
than some positive α) should be disregarded, i. e., that only a few terms of the 
infinite series be taken into account). But how large ought to be the maximal 
value of α? And a similar question for probabilities of loss higher than 1 – α? 
There is no general answer, everything depends on circumstances lying 
beyond the province of mathematics. The value α = 1/10,000 recommended 
by Buffon in 1777, – the probability that a healthy person aged 56 years dies 
within the next 24 hours, – had intuitive appeal, but it was too low and never 
really adopted as a universal estimate. Cf. the concept of moral certainty 
introduced by Descartes and Huygens (§1) and taken up by Jakob Bernoulli. 
    c) It prompted Daniel Bernoulli to introduce the moral expectation (§6) 
which enabled him to solve the paradox by getting rid of the infinity in (10). 
His contribution was published in a periodical of the Petersburg Academy of 
Sciences, hence the name of the paradox.  
    d) It led to an early and possibly the first large-scale statistical experiment: 
Buffon, in the same contribution of 1777, described his series of 2,048 
Petersburg games. The average payoff per game occurred to be only 4.9 and 
the maximal number of tosses in a game was nine, and then only in six cases.  
    e) Condorcet, and later Lacroix discovered a more proper approach to the 
paradox: the possibly infinite game, as they maintained, presented one single 
experiment so that only a mean characteristic of many such games can provide 
a reasonable clue. Freudenthal (1951) studied a series of Petersburg games 
with the gamblers taking turns by lot in each of them. 
    f) A digression. Buffon’s experiment illustrated runs (sequences) of random 
events with one and the same probability of success. Montmort testified that 
gamblers were apt to make wrong conclusions depending on the appearance 
(or otherwise) of a run in a series of independent games of chance. At present, 
runs are made use of to distinguish between chance and regularity. Suppose 
that a certain dimension of each machine part in a batch is a bit larger than 
that of a standard part; how probable is it that something went wrong?  
    De Moivre solved important problems connected with probabilities of 
number sequences in sampling. In 1767 Euler met with similar problems 
when studying lotteries and solved them by the combinatorial method. In 1793 
John Dalton applied elementary considerations when studying the influence 
of auroras on the weather and in the 19th century Quetelet and Köppen 
described the tendency of the weather to persist by elements of the theory of 
runs. 
    10.3. The Ehrenfests’ Model 
    Each of two urns contains an equal number n of balls, white and black, 
respectively. Determine the (expected) number of white balls in the first urn 
after r cyclic interchanges of one ball. Daniel Bernoulli solved this problem 
by the combinatorial method and, in addition, by applying differential 
equations. He also generalized his problem to three urns with balls of three 
colours and noted the existence of a limiting case, of an equal (mean) number 
of balls of each colour in each urn. At present, this can be proved by referring 
to a theorem concerning homogeneous Markov chains. 



    In 1777 Lagrange solved a similar problem for any finite number of urns 
and balls of two colours. He employed partial difference equations as did 

Laplace in 1811 when solving a similar problem. Laplace (1814/1995, p. 42) 
also poetically interpreted the solution of such problems: 
 

    These results may be extended to all naturally occurring combinations in 

    which the constant forces animating their elements establish regular 

    patterns of actions suitable to disclose, in the very midst of chaos, systems 

    governed by … admirable laws. 

 

    Nevertheless, it is difficult to discover his constant forces, and a later author 
(Bertrand 1888, p. xx) put it better: “Le hazard, à tout jeu, corrige ses 
caprices”. True, he only connected his remark with the action of the law of 
large numbers; in his case, the less was the relative number of white balls 
(say) in an urn, the less probable became their future extractions.  
    The future history of such urn problems as described above includes the 
celebrated Ehrenfests’ model of 1907 which is usually considered as the 
beginning of the history of stochastic processes. 
    11. Mathematical Statistics 
    Roughly speaking, the difference between probability and statistics consists 
in that the former is deductive whereas the latter (excepting its own theoretical 
part) is inductive and has to do with making conclusions from quantitative 
data. Mathematical statistics emerged in the 20th century and the term itself 
had hardly appeared before C. G. A. Knies introduced it in 1850. 
    However, problems connected with inductive inference are very old: even 
ancient scholars and lawgivers, drawing on numerical data, strove to 
distinguish between causality and randomness, e. g., between deaths from an 
emerging epidemics and the “normal” mortality (the Talmud, see its treatise 
Taamit). Beginning with Petty and Graunt (§1), crude statistical probabilities 
were being applied for estimating populations, and Arbuthnot’s problem 
concerning the births of boys and girls (§6) was also inductive. The main goal 
of De Moivre’s Doctrine of Chances, as he himself declared, was the choice 
between Design and randomness. 
    By studying the statistical determination of the probability of a random 
event, Bayes (§5) opened up a chapter of mathematical statistics. For 
Laplace, probability became the decisive tool for discovering the laws of 
nature (he never mentioned Divine Design). Thus, after establishing that the 
existence of a certain astronomical magnitude, as indicated by observations, 
was highly probable, he (1812, p. 361) felt himself obliged to investigate its 
cause and indeed proved its reality. Several chapters of his classic Théorie 

analytique … could now be called statistical. Since he based it on his earlier 
memoirs, it is natural that there we find him (1774, p. 56) mentioning un 

nouveau genre de problème les hasards and even une nouvelle branche de la 

théorie des probabilités (1781, p. 383). The expression nouvelle branche was 
due to Lagrange, see his letter to Laplace of 13.1.1775 in t. 14 of his Oeuvres, 
who thus described the latter’s estimation of a certain probability.  
    A remark made by Laplace in 1812 can be connected with the present-day 
statistical simulation. He enlarged on Buffon whose study was first 
announced in an anonymous abstract in 1735 and published in 1777. A needle 
of length 2r falls on a set of parallel lines. The probability that it intersects a 
line, as he had found out, was p = 4r/πa where a was the distance between 



adjacent lines, and Laplace noted that from a large number of such falls the 
value of π can thus be estimated. Note that Buffon had made use of geometric 
probability.  
    A curious and wrong statement made by the astronomer William Herschel 
(1817, p. 579) shows that statistics was sometimes thought to be more 
powerful than it was (or is). He argued that the size of any star, 
“promiscuously chosen” out of the 14,000 stars of the first seven magnitudes, 
was “not likely to differ much from a certain mean size of them all”. Unlike 
observational errors (say), stars (of differing physical nature!) could not have 
belonged to one and the same statistical population. Only in the former case 
we may estimate (by applying the later Bienaymé – Chebyshev inequality 
and issuing from data!) the deviations of the possible values of a random 
variable from their mean. 
    Sampling theory is a chapter of statistics, but the practice of sampling in 
England goes back at least to the 13th century when it began to be applied for 
assaying the new coinage (Stigler 1977). For many years, W. Herschel 
engaged in counting the stars in heaven. In his report of 1784 he noted that in 
one section of the Milky Way their multitude prevented him so that he only 
counted the stars in six “promiscuously chosen” fields, i. e., applied the 
principle of sampling. He also counted the stars in a “most vacant” field, 
obviously for checking the lower bound of his calculated estimate of the total 
number of stars in the section. 
    In the absence of censuses, Laplace (1786) employed sampling for 
calculating the population of France (M). He knew the population of a small 
(sample) part of the country (m), the yearly number of births both there and 
over entire France (n and N), and, assuming that the ratio of births to 
population was constant, he concluded that M = Nm/n. Laplace then applied 
his earlier formulas (end of §5) for estimating the possible error of this figure. 
In 1928 Karl Pearson reasonably remarked that Laplace’s urn model (§5) of 
which he made use here was not adequate and that his relevant approximate 
calculations were imperfect. Still, Laplace was the first to study the error of 
sampling whereas his method of calculation (of the incomplete B function) 
was not improved for more than a century, cf. §5 on the appropriate efforts 
made by Bayes.  
    12. The Opposition 
    The theory of probability did not develop unopposed. Leibniz, in his 
correspondence with Jakob Bernoulli (Kohli 1975), denied that statistical 
probability should be regarded as an equal of its theoretical counterpart. The 
former, he argued, depended on an infinity of circumstances and could not be 
determined by a finite number of observations. Jakob, however, remarked that 
the opposite might be true for the ratio of two infinities (apparently: for the 
rate of success in Bernoulli trials). Later on Leibniz changed his opinion. In 
any case, in a letter of 1714 he even claimed, without any justification, that 
the late Bernoulli “a cultivé” probability “sur mes exhortations”.  
    De Moivre (1756, p. 254) stated that 
 
    There are Writers, of a Class indeed very different from that of James 

Bernoulli, who insinuate as if the Doctrine of Probabilities could have no 

place in any serious Enquiry … [that its study was] trivial and easy [and] 
rather disqualifies a man from reasoning on every other subject.  

 



Simpson (1756, p. 82) defined the aim of his memoir on the arithmetic mean 
(§8.3) as refuting 
 

    Some persons, of considerable note, who … even publickly maintained that 

one single observation taken with due care, was as much to be relied on as the 

mean of a great number of them … 
 
    Indeed, natural scientists might have persisted in Robert Boyle’s belief 
(1772, p. 376) that “experiments ought to be estimated by their value, not their 
number”. However, the two approaches should be complementary rather than 
contradictory. 
    The main culprit was however D’Alembert (who nevertheless did not 
check the advance of probability). In 1754 and again in 1765 he claimed that 
the probability of throwing two heads consecutively was 1/3 rather than 1/4. 
He also believed that after several heads in succession tails will become more 
likely and he aggravated this nonsense by an appeal to determine probabilities 
statistically (which would have proved him wrong). Then, in 1768, he was 
unable to understand why the mean and the probable duration of life did not 
coincide. 
    Euler (Juskevic et al 1959, p. 221), in a letter of 27 May/7 June 1763, 
mentioned Dalembert’s “unbearable arrogance” and argued that he had tried 
“most shamelessly to defend all his mistakes” [possibly not only in 
probability]. Witness also Dalembert’s invasion (1759, p. 167) of an alien 
field of knowledge: “The physician most worthy of being consulted is the one 
who least believes in medicine”.  
    True, Dalembert also put forward some reasonable ideas. He remarked, 
after Buffon, that low probabilities of gain ought to be discarded and he noted 
that the benefits of inoculation (§6) should be reassessed. In general, some of 
his criticisms were ahead of the time since they implied that the theory of 
probability ought to be built up more rigorously. 
    13. On the Threshold of the Next Century 
    The new century began with the appearance, in 1812, of Laplace’s 
Théorie(which I had to mention above). There, he brought together all his 
pertinent memoirs (including those of 1809 – 1811), but failed to merge them 
into a coherent whole. True, he applied the De Moivre – Laplace limit 
theorem wherever possible, but he did not introduce, even on a heuristic level, 
the notion of a random variable, did not therefore study densities or 
characteristic functions per se; his theory of probability still belonged to 
applied mathematics and did not admit of development. 
    But what was achieved up to 1801? The first limit theorems were proved; 
generating functions and difference equations were introduced and applied; 
and integrals were approximated by new and complicated methods. The study 
of games of chance originated important topics with future applications in 
natural sciences and economics. Probability became widely applied to 
population statistics and treatment of observations (and jurisprudence), but 
natural sciences did not yet yield to this new discipline. Problems really 
belonging to mathematical statistics were being solved again and again and 
the time became ripe for Gauss to develop the method of least squares. 
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