A game-theoretic ergodic theorem for imprecise Markov chains

Gert de Cooman

Ghent University, SYSTeMS

gert.decooman@UGent.be
http://users.UGent.be/~gdcooma
gertekoo.wordpress.com

GTP 2014 CIMAT, Guanajuato 13 November 2014

My boon companions

FILIP HERMANS

ENRIQUE MIRANDA

JASPER DE BOCK

Jean Ville and martingales

The original definition of a martingale

Définition 1. — Soit $X_1, X_2, \ldots, X_n, \ldots$ une suite de variables aléatoires, telle que les probabilités

Pr. $\{X_1 < x_1, X_2 < x_2, \ldots, X_n < x_n\}$ $(n = 1, 2, 3, \ldots)$

soient bien définies et que les X_i ne puissent prendre que des valeurs finies.

Soit une suite de fonctions s_0 , $s_1(x_1)$, $s_2(x_1, x_2)$, ... non négatives telles que

(14)
$$\begin{cases} s_0 = 1, \\ \mathfrak{M}_{x_1, v_1, \dots, v_{n-1}} \{ s_n(x_1, x_2, \dots, x_{n-1}, X_n) \} = s_{n-1}(x_1, x_2, \dots, x_{n-1}), \end{cases}$$

où $\mathfrak{M}_{\mathbf{x}}\{\mathbf{Y}\}$ représente d'une manière générale la valeur moyenne conditionnelle de la variable Y quand on connatt la position du point aléatoire X, au sens indiqué par M. P. Lévy. Dans ces conditions, nous dirons que la suite $\{s_n\}$ définit une marting ale ou un jeu équitable.

Étude critique de la notion de collectif, 1939, p. 83

In a (perhaps) more modern notation

Ville's definition of a martingale

A martingale *s* is a sequence of real functions s_o , $s_1(X_1)$, $s_2(X_1, X_2)$, ... such that

1
$$s_o = 1$$
;
2 $s_n(X_1, ..., X_n) \ge 0$ for all $n \in \mathbb{N}$;
3 $E(s_{n+1}(x_1, ..., x_n, X_{n+1}) | x_1, ..., x_n) = s_n(x_1, ..., x_n)$ for all $n \in \mathbb{N}_0$ and all $x_1, ..., x_n$.

It represents the outcome of a fair betting scheme, without borrowing (or bankruptcy).

Ville's theorem

The collection of all (locally defined!) martingales determines the probability P on the sample space Ω :

 $P(A) = \sup\{\lambda \in \mathbb{R}: s \text{ martingale and } \limsup_{n \to +\infty} \lambda s_n(X_1, \dots, X_n) \leq \mathbb{I}_A\}$

 $= \inf\{\lambda \in \mathbb{R} \colon s \text{ martingale and } \liminf_{n \to +\infty} \lambda s_n(X_1, \dots, X_n) \ge \mathbb{I}_A\}$

Ville's theorem

The collection of all (locally defined!) martingales determines the probability P on the sample space Ω :

 $P(A) = \sup\{\lambda \in \mathbb{R} : s \text{ martingale and } \limsup_{n \to +\infty} \lambda s_n(X_1, \dots, X_n) \le \mathbb{I}_A\}$ $= \inf\{\lambda \in \mathbb{R} : s \text{ martingale and } \liminf_{n \to +\infty} \lambda s_n(X_1, \dots, X_n) \ge \mathbb{I}_A\}$

Turning things around

Ville's theorem suggests that we could take a convex set of martingales as a primitive notion, and probabilities and expectations as derived notions.

That we need an convex set of them, elucidates that martingales are examples of partial probability assessments.

Imprecise probabilities: dealing with partial probability assessments

Partial probability assessments

lower and/or upper bounds for

- the probabilities of a number of events,
- the expectations of a number of random variables

Partial probability assessments

lower and/or upper bounds for

- the probabilities of a number of events,
- the expectations of a number of random variables

Imprecise probability models

A partial assessment generally does not determine a probability measure uniquely, only a convex closed set of them.

Partial probability assessments

lower and/or upper bounds for

- the probabilities of a number of events,
- the expectations of a number of random variables

Imprecise probability models

A partial assessment generally does not determine a probability measure uniquely, only a convex closed set of them.

IP Theory

systematic way of dealing with, representing, and making conservative inferences based on partial probability assessments

A Subject is uncertain about the value that a variable *X* assumes in \mathcal{X} .

Gambles: A gamble $f: \mathscr{X} \to \mathbb{R}$ is an uncertain reward whose value is f(X). $\mathscr{G}(\mathscr{X})$ denotes the set of all gambles on \mathscr{X} .

A Subject is uncertain about the value that a variable X assumes in \mathscr{X} .

Gambles: A gamble $f: \mathscr{X} \to \mathbb{R}$ is an uncertain reward whose value is f(X). $\mathscr{G}(\mathscr{X})$ denotes the set of all gambles on \mathscr{X} .

Lower and upper expectations:

A lower expectation is a real functional that satisfies:

E1. $\underline{E}(f) \ge \inf f$ [bounds]E2. $\underline{E}(f+g) \ge \underline{E}(f) + \underline{E}(g)$ [superadditivity]E3. $\underline{E}(\lambda f) = \lambda \underline{E}(f)$ for all real $\lambda \ge 0$ [non-negative homogeneity] $\overline{E}(f) := -\underline{E}(-f)$ defines the conjugate upper expectation.

Sub- and supermartingales

An event tree and its situations

Situations are nodes in the event tree, and the sample space Ω is the set of all terminal situations:

Events

An event *A* is a subset of the sample space Ω :

Local, or immediate prediction, models

In each non-terminal situation *s*, Subject has a belief model $Q(\cdot|s)$.

 $D(s) = \{c_1, c_2\}$ is the set of daughters of s.

Sub- and supermartingales

We can use the local models $\underline{Q}(\cdot|s)$ to define sub- and supermartingales:

A submartingale <u>M</u>

is a real process such that in all non-terminal situations s:

 $\underline{Q}(\underline{\mathscr{M}}(s\,\cdot\,)|s)\geq\underline{\mathscr{M}}(s).$

A supermartingale $\overline{\mathcal{M}}$

is a real process such that in all non-terminal situations s:

 $\overline{Q}(\overline{\mathscr{M}}(s\,\cdot\,)|s) \leq \overline{\mathscr{M}}(s).$

The most conservative lower and upper expectations on $\mathscr{G}(\Omega)$ that coincide with the local models and satisfy a number of additional continuity criteria (cut conglomerability and cut continuity):

Conditional lower expectations:

 $\underline{E}(f|s) \coloneqq \sup\{\underline{\mathscr{M}}(s) \colon \limsup \underline{\mathscr{M}} \le f \text{ on } \Gamma(s)\}$

Conditional upper expectations:

 $\overline{E}(f|s) \coloneqq \inf\{\overline{\mathscr{M}}(s) \colon \liminf\overline{\mathscr{M}} \ge f \text{ on } \Gamma(s)\}$

Test supermartingales and strictly null events

A test supermartingale \mathcal{T}

is a non-negative supermartingale with $\mathscr{T}(\Box) = 1$. (Very close to Ville's definition of a martingale.)

An event A is strictly null

if there is some test supermartingale \mathscr{T} that converges to $+\infty$ on A:

$$\lim \mathscr{T}(\omega) = \lim_{n \to \infty} \mathscr{T}(\omega^n) = +\infty \text{ for all } \omega \in A.$$

If A is strictly null then

$$\overline{P}(A) = \overline{E}(\mathbb{I}_A) = \inf\{\overline{\mathscr{M}}(\Box) : \liminf \overline{\mathscr{M}} \ge \mathbb{I}_A\} = 0.$$

A few basic limit results

Supermartingale convergence theorem [Shafer and Vovk, 2001] A supermartingale $\overline{\mathscr{M}}$ that is bounded below converges strictly almost surely to a real number:

 $\label{eq:main_state} \liminf \overline{\mathscr{M}}(\omega) = \limsup \overline{\mathscr{M}}(\omega) \in \mathbb{R} \text{ strictly almost surely}.$

A few basic limit results

Strong law of large numbers for submartingale differences [De Cooman and De Bock, 2013] Consider any submartingale *M* such that its difference process

$$\Delta \underline{\mathscr{M}}(s) = \underline{\mathscr{M}}(s \cdot) - \underline{\mathscr{M}}(s) \in \mathscr{G}(D(s)) \text{ for all non-terminal } s$$

is uniformly bounded. Then $\liminf \langle \underline{\mathscr{M}} \rangle \geq 0$ strictly almost surely, where

$$\langle \underline{\mathscr{M}} \rangle(\omega^n) = \frac{1}{n} \underline{\mathscr{M}}(\omega^n) \text{ for all } \omega \in \Omega \text{ and } n \in \mathbb{N}$$

A few basic limit results

Lévy's zero–one law [Shafer, Vovk and Takemura, 2012] For any bounded real gamble f on Ω :

 $\limsup_{n \to +\infty} \underline{E}(f|\omega^n) \leq f(\omega) \leq \liminf_{n \to +\infty} \overline{E}(f|\omega^n) \text{ strictly almost surely}.$

Imprecise Markov chains

A simple discrete-time finite-state stochastic process

An imprecise IID model

An imprecise Markov chain

Stationarity and ergodicity

The lower expectation \underline{E}_n for the state X_n at time n:

 $\underline{E}_n(f) = \underline{E}(f(X_n))$

The imprecise Markov chain is Perron–Frobenius-like if for all marginal models \underline{E}_1 and all f:

$$\underline{E}_n(f) \to \underline{E}_{\infty}(f).$$

and if $\underline{E}_1 = \underline{E}_{\infty}$ then $\underline{E}_n = \underline{E}_{\infty}$, and the imprecise Markov chain is stationary.

In any Perron–Frobenius-like imprecise Markov chain:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \underline{E}_n(f) = \underline{E}_{\infty}(f)$$

and

$$\underline{E}_{\infty}(f) \leq \liminf_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) \leq \limsup_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) \leq \overline{E}_{\infty}(f) \text{ str. almost surely.}$$

A more general ergodic theorem: the basics

Introduce a shift operator:

$$\theta \omega = \theta(x_1, x_2, x_3, \dots) \coloneqq (x_2, x_3, x_4, \dots)$$
 for all $\omega \in \Omega$,

and for any gamble f on Ω a shifted gamble $\theta f := f \circ \theta$:

$$(\boldsymbol{\theta} f)(\boldsymbol{\omega}) \coloneqq f(\boldsymbol{\theta} \boldsymbol{\omega}) \text{ for all } \boldsymbol{\omega} \in \Omega.$$

For any bounded gamble f on Ω , the bounded gambles:

$$g = \liminf_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \theta^k f \text{ and } g = \limsup_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \theta^k f$$

are shift-invariant: $\theta g = g$.

A more general ergodic theorem: use Lévy's zero-one law

In any Perron–Frobenius-like imprecise Markov chain, for any shift-invariant gamble $g = \theta g$ on Ω :

$$\lim_{n \to +\infty} \underline{E}(g|\boldsymbol{\omega}^n) = \underline{E}_{\infty}(g) \text{ and } \lim_{n \to +\infty} \overline{E}(g|\boldsymbol{\omega}^n) = \overline{E}_{\infty}(g)$$

and therefore

 $\underline{E}_{\infty}(g) \leq g \leq \overline{E}_{\infty}(g)$ strictly almost surely.

New books

Copyrighted Material

WILEY SERIES IN PROBABILITY AND STATISTICS

Lower Previsions

MATTHIAS C. M. TROFFAES | GERT DE COOMAN

Copyrighted Material

WILEY

WILEY SERIES IN PROBABILITY AND STATISTICS

Introduction to Imprecise Probabilities

Edited by Thomas Augustin Frank P. A. Coolen Gert de Cooman Matthias C. M. Troffaes

WILEY