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Some Prediction Problems

Will a friendship relation form between two Facebook users?

Which ads should Google show me when I search for flights
to Mexico?

507,000 webpages match game-theoretic probability: in
which order should Google show them to me?

Should Gmail put the email with subject FREE ONLINE

COURSES!!! in the spam folder?
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Mathematical Formulation of Prediction Problems

Input space X (vectors, matrices, text, graphs)

Label space Y
(classification) Y = {±1}
(regression) Y = [−1,+1]
(ranking) Y = Sk , group of k-permutations

Want to learn a prediction function f : X → Y
Loss function: how bad is prediction f (x) if “truth” is y
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Predictions and Losses

Learner/Statistician/Decision Maker chooses prediction
function f : X → Y
Adversary/Nature/Environment produces examples
(x , y) ∈ X × Y
Learner’s loss `(f (x), y)

Assume ` is bounded
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Probabilistic Approach

(xt , yt) are drawn from a stochastic process

For instance, (xt , yt) i.i.d. from some distribution P

Parametric case: P = Pθ with θ ∈ Θ ⊆ Rp

Distribution free or “agnostic” case: P arbitrary

Goal: Choose f̂ based on the sample ((xt , yt))nt=1 to have small
expected loss

Ex1:n,y1:n,x ,y∼P

[
`(f̂ (x), y)

]
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Empirical Risk Minimization

Risk and empirical risk

L(f ) = E(x ,y)∼P [`(f (x), y)] L̂(f ) =
1

n

n∑
t=1

`(f (xt), yt)

Risk minimizer
f ? = argmin

f ∈F
L(f )

Empirical risk minimizer (ERM)

f̂ = argmin
f ∈F

L̂(f )

Excess risk
L(f̂ )− L(f ?)
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Game Theoretic Approach

FOR t = 1 to n

Adversary plays xt ∈ X
Learner plays ft ∈ F
Adversary plays yt ∈ Y
Learner suffers `(ft(xt), yt)

ENDFOR

No assumption on data generating mechanism

Want to “do well” on every sequence (x1, y1), . . . , (xn, yn)

Goal: Tricky to define
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Regret

Measure learner’s loss relative to some benchmark computed
in hindsight

(External) Regret

n∑
t=1

`(ft(xt), yt)−min
f ∈F

n∑
t=1

`(f (xt), yt)

Benchmark here is the best fixed decision in hindsight

Many variants exist (switching regret, Φ-regret)
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Why Study Regret?

Lets us proceed with no assumptions on the data generating
process

Regret-minimizing algorithms perform well if data is i.i.d.

Yields simple one-pass algorithms

If players in a game follow regret-minimizing algorithms, the
empirical distribution of play converges to an equilibrium

Long history in Computer Science, Finance, Game Theory,
Information Theory, and Statistics
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Two pioneers

James Hannan (1922-2010) David Blackwell (1919-2010)
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Simplest Case: Finite Class of Functions

|F| = K

Hannan’s theorem. There is a (randomized) learner
strategy for which

(expected) regret = o(n)

“no-regret learning” or “Hannan consistency”: when regret =
o(n)
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Multiple Discovery

Originally proved by Hannan (1956)

Blackwell (1956) showed how it follows from his
approachability theorem

Result has been proven many times since then:

Banos (1968)
Cover (1991)
Foster & Vohra (1993)
Vovk (1993)
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Rest of the Talk

Rademacher complexity and its sequential analog

Fat-shattering dimension and its sequential analog

Uniform martingale law of large numbers

Rakhlin, Sridharan, Tewari Sequential complexities and uniform martingale LLNs



Rademacher Complexity

Recall ERM f̂ , RM f ?

f̂ = argmin
f ∈F

L̂(f ) f ? = argmin
f ∈F

L(f )

Easy to show

E
[
L(f̂ )− L(f ?)

]
≤ E

[
sup
f ∈F

L(f )− L̂(f )

]
Symmetrization (εt ’s are Rademacher, i.e. symmetric Bernoulli)

E
[

sup
f ∈F

L(f )− L̂(f )

]
≤ 2Eε1:n,x1:n,y1:n

[
sup
f ∈F

1

n

n∑
t=1

εt`(f (xt), yt)

]
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Which Algorithm Should We Analyze?

Obvious analogue of ERM is “follow-the-leader” or “fictitious
play”:

ft+1 = argmin
f ∈F

t∑
s=1

`(f (xs), ys)

Does not enjoy good regret bound

Lack of a generic regret-minimizing strategy is a problem

Directly attack minimax regret
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Minimax Regret

Minimax regret:

Vn := min
Learner

strategies

max
Adversary
strategies

E

[
n∑

t=1

`(ft(xt), yt)−min
f ∈F

n∑
t=1

`(f (xt), yt)

]

Theorem (Rakhlin, Sridharan, Tewari (2010))

Vn ≤ 2Rseq
n

Important precursor: Abernethy et al. (2009)
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Sequential Rademacher Complexity

Rseq
n := sup

x,y
Eε1:n

[
sup
f ∈F

n∑
t=1

εt`(f (x(ε1:t−1)), y(ε1:t−1)

]

x1, y1

x2, y2

x4, y4 x5, y5

x3, y3

x6, y6 x7, y7

Tree x, y

Rakhlin, Sridharan, Tewari Sequential complexities and uniform martingale LLNs



Sequential Rademacher Complexity

Rseq
n := sup

x,y
Eε1:n

[
sup
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Sequential Rademacher Complexity

Rseq
n := sup

x,y
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εt`(f (x(ε1:t−1)), y(ε1:t−1)

]
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+1

+1

−1
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Tree x, y
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Rademacher Complexity: Classical vs. Sequential

Rn(` ◦ F) := Eε1:n,x1:n,y1:n

[
sup
f ∈F

n∑
t=1

εt`(f (xt), yt))

]

Rseq
n (` ◦ F) := sup

x,y
Eε1:n

[
sup
f ∈F

n∑
t=1

εt`(f (x(ε1:t−1)), y(ε1:t−1))

]

Sequences x1:n, y1:n replaced by tree x, y

Expectation over sequences x1:n, y1:n replaced by supremum
over trees x, y
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Seq. Rademacher Complexity: Properties

(inclusion) If F ⊆ F ′ then

Rseq
n (` ◦ F) ≤ Rseq

n (` ◦ F ′)

(scaling) If c ∈ R then

Rseq
n (c` ◦ F) = |c | · Rseq

n (` ◦ F)

(translation) If `′ = `+ h then

Rseq
n (` ◦ F) = Rseq(`′ ◦ F)

Using these and other properties, possible to bound seq.
Rademacher complexity of decision trees, neural networks, etc.
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Regression: Fat Shattering Dimension

F consists of functions f : X → [−1,+1]

x1:n is α-shattered by F , if there exists thresholds s1:n such
that for all ε1:n ∈ {±1}n

∃f ∈ F , ∀t ∈ {1, . . . , n}, εt(f (xt)− st) ≥ α

x1 x2 x3

s1

s2

s3

f1≥ α

f2

f3

f4

f5

f6

f7

f8

The fat shattering dimension of F at scale α is the length of
the longest sequence x1:n that is α-shattered by F
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Regression: Seq. Fat Shattering Dimension

Tree x is α-shattered by F , if there exists a threshold tree s
such that for all ε1:n ∈ {±1}n

∃f ∈ F , ∀t ∈ {1, . . . , n}, εt · (f (x(ε1:t−1)− s(ε1:t−1) ≥ α

x1

x2

x4

f1

−

f2

+

−
x5

f3

−

f4

+

+

−
x3

x6

f5

−

f6

+

−
x7

f7

−

f8

+

+

+

s1

s2

s4 s5

s3

s6 s7

The sequential fat shattering dimension of F at scale α is the
depth of the deepest tree x that is α-shattered by F
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Learnability

Regression with squared loss:
f : X → [−1,+1], (x , y) ∈ X × [−1,+1]

`(f (x), y) = (y − f (x))2

Probabilistic setting

E
[
L(f̂ )− L(f ?)

]
→ 0

Game theoretic setting

Vn

n
→ 0
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Uniform Law of Large Numbers

Fix class F of bounded real valued functions

IID setting: If X1,X2, . . . are iid, do we have

sup
f ∈F

(
1

n

n∑
t=1

f (Xt)− E [f (X )]

)
→ 0

with convergence being uniform over all distributions?

Martingale setting: If X1,X2, . . . is an arbitrary stochastic
process, do we have

sup
f ∈F

(
1

n

n∑
t=1

(f (Xt)− E [f (Xt)|X1:t−1])

)
→ 0

with convergence being uniform over all distributions?
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Four-way Equivalence: Classical Case

Several refs; see below

The following are equivalent (for a class F of bounded real valued
functions)

F is learnable in the iid setting under squared loss

fatα(F) <∞ for all α > 0

Rn(F)→ 0

Uniform law of large numbers holds for F

Kearns, Schapire (1994); Bartlett, Long, Williamson (1996); Alon,

Ben-David, Cesa-Bianchi, Haussler (1997); Mendelson (2002)
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Fourfold Equivalence: Sequential Case

Rakhlin, Sridharan, Tewari (2010, 2014a, 2014b)

The following are equivalent (for a class F of bounded real valued
functions)

F is learnable in the online regression setting under squared
loss

sfatα(F) <∞ for all α > 0

Rseq
n (F)→ 0

Uniform martingale law of large numbers holds for F
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Summary

Online learning framework uses game-theoretic, not
probabilistic, foundations for prediction problems

Complexity measures such as Rademacher complexity and
fat-shattering dimension have natural sequential analogs

Sequential complexity measures characterize function classes
for which uniform martingale LLN holds
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