GPD GTP?

Dusko Pavlovic

Pennies

Question

Does God Play Dice in Game Theoretic Probability?

Dusko Pavlovic

University of Hawaii

GTP, Guanajuato, 14/11/14

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

Matching Pennies

Question

GPD GTP?

Dusko Pavlovic

Pennies

Question

・ロト・日本・山田・山田・山口・

Outline

Matching Pennies

Game

No Wealth by Matching Pennies

Wealth by Matching Pennies

Question

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Bimatrix presentation of 2-player games

•
$$A_1 = \{U, D\}$$

•
$$A_2 = \{L, R\}$$

•
$$u = \langle u_1, u_2 \rangle : A_1 \times A_2 \to \mathbb{R} \times \mathbb{R}$$

$$\begin{array}{c|cccc} L & R \\ & u_2(U,L) & u_2(U,R) \\ \\ U & u_1(U,L) & u_1(U,R) \\ & u_2(D,L) & u_2(D,R) \\ \\ D & u_1(D,L) & u_1(D,R) \end{array}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

▶ players: A, B

• moves: $M_A = M_B = \{H, T\}$

•
$$u = \langle u_A, u_B \rangle : M_A \times M_B \to \mathbb{R} \times \mathbb{R}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

Strategy: Randomize!

The only Nash equilibrium for Matching Pennies is the profile $\langle a, b \rangle$ where the players randomize

$$p(a = H) = \frac{1}{2} = p(b = H)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Randomness: Strategy!

The other way around, we can define that a sequence

$H, T, T, H, T \dots$

is random iff it is a strategy for Matching Pennies that does not lose against any opponent.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Randomness: Strategy!

The other way around, we can define that a sequence

$$H, T, T, H, T \dots$$

is random iff it is a strategy for Matching Pennies that does not lose against any opponent.

[**Reason**: If you can write a short program to predict the next move with probability $> \frac{1}{2}$, then you can win Matching Pennies.]

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Suspicion

Is this a bit like Game Theoretic Probability?

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本・日本

Suspicion

- Is this a bit like Game Theoretic Probability?
- Maybe not quite...

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matching Pennies against Nature

• moves: $M_A = M_B = \{+, -\}, M_N = \{00, 01, 10, 11\}$

•
$$u = \langle u_{A,B}, u_N \rangle : M_{A,B} \times M_N \to \mathbb{R} \times \mathbb{R}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

Matching Pennies against Nature

Game protocol

- *N* moves first with $xy \in \{0, 1\}^2$
- A sees x (not y or b) and responds with $a \in \{+, -\}$
- ▶ *B* sees *y* (not *x* or *a*) and responds with $b \in \{+, -\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Matching Pennies against Nature

Game protocol

- *N* moves first with $xy \in \{0, 1\}^2$
- A sees x (not y or b) and responds with $a \in \{+, -\}$
- ▶ *B* sees *y* (not *x* or *a*) and responds with $b \in \{+, -\}$

Remark

They play a game of imperfect information.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Coordinating pennies: Strategies

- N's moves xy are random and uniformly distributed.
- A and B should coordinate to specify
 - A's strategy: probability distribution p(a|x)
 - B's strategy: probability distribution p(b|y)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

to maximize their payoffs.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Coordinating pennies: Payoffs

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

$$\mathbb{U}_{AB} = \frac{1}{4} \Big(\mathbb{E}_{AB}(00) + \mathbb{E}_{AB}(01) + \mathbb{E}_{AB}(10) - \mathbb{E}_{AB}(11) \Big)$$
$$\mathbb{E}_{AB}(xy) = \sum_{a,b \in M_{AB}} a \cdot b \cdot p(ab | xy)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where we muliply $a, b \in \{+, -\}$ as if they are +1 and -1

Theorem

If the mutual dependency of *x* and *y* is expressed by a variable $\lambda \in \Lambda$ with density $q : \Lambda \rightarrow [0, 1]$, so that

$$p(ab|xy) = \int_{\Lambda} p(a|x,\lambda) \cdot p(b|y,\lambda) \cdot q(\lambda) d\lambda \quad (1)$$

then

$$\mathbb{U}_{AB} \leq \frac{1}{2} \tag{2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Proof

Write

$$\mathbb{E}_{A}(x,\lambda) = \sum_{a \in M_{A}} a \cdot p(a | x, \lambda)$$
$$\mathbb{E}_{B}(y,\lambda) = \sum_{b \in M_{B}} b \cdot p(b | y, \lambda)$$
$$\mathbb{E}_{AB}(xy,\lambda) = \mathbb{E}_{A}(x,\lambda) \cdot \mathbb{E}_{B}(y,\lambda)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Proof

Then

$$\mathbb{U}_{AB} = \int_{\Lambda} \mathbb{U}_{AB}(\lambda) \cdot q(\lambda) d\lambda$$

for

$$\mathbb{U}_{AB}(\lambda) = \frac{1}{4} \Big(\mathbb{E}_{A}(0,\lambda) \cdot \mathbb{E}_{B}(0,\lambda) + \mathbb{E}_{A}(0,\lambda) \cdot \mathbb{E}_{B}(1,\lambda) + \mathbb{E}_{A}(1,\lambda) \cdot \mathbb{E}_{B}(0,\lambda) - \mathbb{E}_{A}(1,\lambda) \cdot \mathbb{E}_{B}(1,\lambda) \Big)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Proof

Then

$$\mathbb{U}_{AB} = \int_{\Lambda} \mathbb{U}_{AB}(\lambda) \cdot q(\lambda) d\lambda$$

for

$$\begin{split} \mathbb{U}_{AB}(\lambda) &= \frac{1}{4} \Big(\mathbb{E}_{A}(0,\lambda) \cdot \mathbb{E}_{B}(0,\lambda) + \mathbb{E}_{A}(0,\lambda) \cdot \mathbb{E}_{B}(1,\lambda) + \\ & \mathbb{E}_{A}(1,\lambda) \cdot \mathbb{E}_{B}(0,\lambda) - \mathbb{E}_{A}(1,\lambda) \cdot \mathbb{E}_{B}(1,\lambda) \Big) \\ &= \frac{1}{4} \Big(\mathbb{E}_{A}(0,\lambda) \cdot \big(\mathbb{E}_{B}(0,\lambda) + \mathbb{E}_{B}(1,\lambda) \big) + \\ & \mathbb{E}_{A}(1,\lambda) \cdot \big(\mathbb{E}_{B}(0,\lambda) - \mathbb{E}_{B}(1,\lambda) \big) \Big) \end{split}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof

Since $-1 \leq \mathbb{E}_A(0, \lambda), \mathbb{E}_A(1, \lambda) \leq 1$

$$\mathbb{U}_{AB}(\lambda) \hspace{.1in} \leq \hspace{.1in} rac{1}{4} \Bigl(ig| \mathbb{E}_B(0,\lambda) + \mathbb{E}_B(1,\lambda) ig| + ig| \mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) ig| \Bigr)$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof

Since
$$-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$$

$$\mathbb{U}_{AB}(\lambda) \leq rac{1}{4} \Big(\big| \mathbb{E}_B(0,\lambda) + \mathbb{E}_B(1,\lambda) \big| + \big| \mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) \big| \Big)$$

If $\mathbb{E}_{B}(0, \lambda) \geq \max\{0, \mathbb{E}_{B}(1, \lambda)\}$, then it follows that

$$\begin{aligned} \mathbb{U}_{AB}(\lambda) &\leq \frac{1}{4} \Big(\mathbb{E}_{B}(0,\lambda) + \mathbb{E}_{B}(1,\lambda) + \mathbb{E}_{B}(0,\lambda) - \mathbb{E}_{B}(1,\lambda) \Big) \\ &= \frac{1}{4} \Big(\mathbb{E}_{B}(0,\lambda) + \mathbb{E}_{B}(0,\lambda) \Big) \\ &\leq \frac{1}{2} \end{aligned}$$

・ロト・西ト・ヨト・ヨト・ ヨー うらぐ

since $0 \leq \mathbb{E}_B(0, \lambda) \leq 1$.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Proof

Since
$$-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$$

$$\mathbb{U}_{AB}(\lambda) \leq \frac{1}{4} \Big(\big| \mathbb{E}_B(0,\lambda) + \mathbb{E}_B(1,\lambda) \big| + \big| \mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) \big| \Big)$$

If $0 \ge \mathbb{E}_B(0, \lambda) \ge \mathbb{E}_B(1, \lambda)$, then it follows that

$$\begin{split} \mathbb{U}_{AB}(\lambda) &\leq \frac{1}{4} \Big(-\mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) + \mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) \Big) \\ &= \frac{1}{4} \Big(-\mathbb{E}_B(1,\lambda) - \mathbb{E}_B(1,\lambda) \Big) \\ &\leq \frac{1}{2} \end{split}$$

since $0 \geq \mathbb{E}_B(1, \lambda) \geq -1$.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・西ト・西ト・西ト・日・

Proof

Since
$$-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$$

$$\mathbb{U}_{AB}(\lambda) \leq rac{1}{4} \Big(ig| \mathbb{E}_B(0,\lambda) + \mathbb{E}_B(1,\lambda) ig| + ig| \mathbb{E}_B(0,\lambda) - \mathbb{E}_B(1,\lambda) ig| \Big)$$

If $\mathbb{E}_B(0,\lambda) \leq \mathbb{E}_B(1,\lambda),$ then the two analogous cases again give

$$\mathbb{U}_{AB}(\lambda) \leq \frac{1}{2}$$

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Proof

In all cases

$$\mathbb{U}_{AB} = \int_{\Lambda} \mathbb{U}_{AB}(\lambda) \cdot q(\lambda) d\lambda \leq \int_{\Lambda} \frac{1}{2} q(\lambda) d\lambda = \frac{1}{2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Interpretation

Suppose that

- ► A, B and N repeat the game infinitely often, and
- A and B invest $\frac{1}{2}$ each for every bet.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Interpretation

Suppose that

- A, B and N repeat the game infinitely often, and
- A and B invest $\frac{1}{2}$ each for every bet.

Since *N*'s moves are uniformly distributed, *A* and *B*'s chances are

- $\frac{3}{4}$ to win \$1
- ¹/₄ to lose \$1

i.e. the expected winnings for each of them are

$$\frac{3}{4}(\$1) + \frac{1}{4}(-\$1) = \$\frac{1}{2}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Interpretation

So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged. GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Interpretation

- So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged.
 - This is the Nash equilibrium of Matching Pennies.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Interpretation

- So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged.
 - This is the Nash equilibrium of Matching Pennies.
- The question is whether they can increase their wealth by coordinating.
 - The answer suggested by the Theorem is NO.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Another suspicion

- Is averaging out the hidden variable *λ* really the only way in which *A* and *B* can coordinate?
- Maybe not?

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

Idea

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

E.g., they could also use entangled photons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Idea

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

Plants extract their strategic advantage similarly: photosynthesis is a quantum effect!

Claim

Using a physical device, *A* and *B* can disprove the Hidden Variable Theorem.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Claim

Using a physical device, *A* and *B* can disprove the Hidden Variable Theorem.

More precisely

Measuring entangled photons, A and B can coordinate their strategies to match pennies against N in such a way that their wealth will increase, infinitely in the long run.

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

A and B's strategic device

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

A and B's preparation

• The device emits \vec{x} and \vec{y} in the singlet state

$$\Psi = \frac{|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle}{\sqrt{2}} = \frac{|\rightarrow\leftarrow\rangle - |\leftarrow\rightarrow\rangle}{\sqrt{2}}$$

• A measures the spin of \vec{x} in the basis

$$\left\{ \left|\downarrow\right\rangle ,\qquad\left|\uparrow\right\rangle \right\}$$

• B measures the spin of \vec{y} in the basis

$$\Big\{|\rightarrow\rangle = \frac{-(|\downarrow\rangle + |\uparrow\rangle)}{\sqrt{2}}, \qquad |\leftarrow\rangle = \frac{-(|\downarrow\rangle - |\uparrow\rangle)}{\sqrt{2}}\Big\}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

・ロト・日本・日本・日本・日本・日本

A and B's strategy

The response to *N*'s move $xy \in \{00, 01, 10, 11\}$ is:

- A sees x ∈ {0, 1}
- if x = 0 measure $|\downarrow\rangle$
- if x = 1 measure $|\uparrow\rangle$
- ▶ if yes then play a = +
- ▶ otherwise play a = −

- *B* sees $y \in \{0, 1\}$
- if y = 0 measure $| \rightarrow \rangle$
- if y = 1 measure $|\leftarrow\rangle$
- ▶ if yes then play b = +

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▶ otherwise play b = -

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Expected payoff for A and B

Since $\mathbb{E}_{AB}(xy) = -\vec{x} \cdot \vec{y}$, it follows that

$$\mathbb{E}_{AB}(00) = \mathbb{E}_{AB}(01) = \mathbb{E}_{AB}(10) = \frac{1}{\sqrt{2}}$$

 $\mathbb{E}_{AB}(11) = -\frac{1}{\sqrt{2}}$

which gives

$$\mathbb{U}_{AB} = \frac{1}{4} \Big(\mathbb{E}_{AB}(00) + \mathbb{E}_{AB}(01) + \mathbb{E}_{AB}(10) - \mathbb{E}_{AB}(11) \Big)$$
$$= \frac{1}{\sqrt{2}}$$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

4

Expected payoff for A and B

Since $\mathbb{E}_{AB}(xy) = -\vec{x} \cdot \vec{y}$, it follows that

$$\mathbb{E}_{AB}(00) = \mathbb{E}_{AB}(01) = \mathbb{E}_{AB}(10) = \frac{1}{\sqrt{2}}$$

 $\mathbb{E}_{AB}(11) = -\frac{1}{\sqrt{2}}$

which gives

$$\mathbb{U}_{AB} = \frac{1}{4} \Big(\mathbb{E}_{AB}(00) + \mathbb{E}_{AB}(01) + \mathbb{E}_{AB}(10) - \mathbb{E}_{AB}(11) \Big)$$

= $\frac{1}{\sqrt{2}} > \frac{1}{2}$

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ●

4

GPD GTP?

Dusko Pavlovic

Pennies

Game

No Winning

Winning

Question

A and B can coordinate to win, but they coordined strategy is not realized through a hidden variable, i.e.

$$p(ab|xy) \neq \int_{\Lambda} p(a|x) \cdot p(b|y) \cdot q(\lambda) d\lambda$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

Matching Pennies

Question

GPD GTP?

Dusko Pavlovic

Pennies

Question

◆□▶▲□▶▲□▶▲□▶▲□▼

Background

- A and B's strategy is based on the Einstein-Podelsky-Rosen's setup (EPR) for "spooky action at distance"
 - Einstein's conclusion: since action at distance is impossible, there must be a hidden variable
- The Hidden Variable Theorem is based on John Bell's inequality.
 - Quantum theoretic prediction: Bell's Inequality can be violated

GPD GTP?

Dusko Pavlovic

Pennies

Background

- A and B's strategy is based on the Einstein-Podelsky-Rosen's setup (EPR) for "spooky action at distance"
 - Einstein's conclusion: since action at distance is impossible, there must be a hidden variable
- The Hidden Variable Theorem is based on John Bell's inequality.
 - Quantum theoretic prediction: Bell's Inequality can be violated <u>we experimentally confirmed</u>

GPD GTP?

Dusko Pavlovic

Pennies

Game Theoretic Probability

GPD GTP?

Dusko Pavlovic

Pennies

Question

What does this have to do with Game Theoretic Probability?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Philosophy of Probability

Question

Whence probability?

Answers

subjective: Because we average over hidden variables

- Bernoulli, Laplace, Einstein, 't Hooft
- objective: Because God plays dice
 - Darwin, Bachelier, Born, Zurek

GPD GTP?

Dusko Pavlovic

Pennies

Game Theoretic Probability

Strategy

Formulate a Probability Theory such that it

- arises from the strategies in a forecasting game
- provides a unified account of random processes
 - supports subjective and objective interpretation

GPD GTP?

Dusko Pavlovic

Pennies

Physics of Probability

GPD GTP?

Dusko Pavlovic

Pennies

Question

But the interpretations can be tested experimentally!

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Physics of Probability

Question

Does God play dice?

Answers

- no: The world is deterministic
 - Einstein, Bohm, superstrings...
- yes: The world emerges from randomness
 - Bell, Aspect, quantum darwinism...

GPD GTP?

Dusko Pavlovic

Pennies

Question

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game Theoretic Probability

GPD GTP?

Dusko Pavlovic

Pennies

Question

Question

Can we

- provide a unified account of random processes
- that allows (thought) experimental testing?