Does God Play Dice in Game Theoretic Probability?

Dusko Pavlovic

University of Hawaii

GTP, Guanajuato, 14/11/14

Outline

Dusko Pavlovic

Matching Pennies

Question

Outline

Dusko Pavlovic

Matching Pennies

Game

No Wealth by Matching Pennies
Wealth by Matching Pennies

Bimatrix presentation of 2-player games

- $n=2$
- $A_{1}=\{U, D\}$
- $A_{2}=\{L, R\}$
- $u=\left\langle u_{1}, u_{2}\right\rangle: A_{1} \times A_{2} \rightarrow \mathbb{R} \times \mathbb{R}$

Matching Pennies

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning
Question

- $u=\left\langle u_{A}, u_{B}\right\rangle: M_{A} \times M_{B} \rightarrow \mathbb{R} \times \mathbb{R}$

Matching Pennies

Strategy: Randomize!

The only Nash equilibrium for Matching Pennies is the profile $\langle a, b\rangle$ where the players randomize

$$
p(a=H)=\frac{1}{2}=p(b=H)
$$

Matching Pennies

Randomness: Strategy!

The other way around, we can define that a sequence

$$
H, T, T, H, T \ldots
$$

is random iff it is a strategy for Matching Pennies that does not lose against any opponent.

Matching Pennies

Randomness: Strategy!
The other way around, we can define that a sequence

$$
H, T, T, H, T \ldots
$$

is random iff it is a strategy for Matching Pennies that does not lose against any opponent.
[Reason: If you can write a short program to predict the next move with probability $>\frac{1}{2}$, then you can win Matching Pennies.]

Matching Pennies

Suspicion

- Is this a bit like Game Theoretic Probability?

Matching Pennies

Dusko Pavlovic

Pennies
Game
No Winning
Winning

Suspicion

- Is this a bit like Game Theoretic Probability?
- Maybe not quite...

Matching Pennies against Nature

GPD GTP?

- players: A, B, N
- moves: $M_{A}=M_{B}=\{+,-\}, M_{N}=\{00,01,10,11\}$
- $u=\left\langle u_{A, B}, u_{N}\right\rangle: M_{A, B} \times M_{N} \rightarrow \mathbb{R} \times \mathbb{R}$

Matching Pennies against Nature

Game protocol

- N moves first with $x y \in\{0,1\}^{2}$
- A sees x (not y or b) and responds with $a \in\{+,-\}$
- B sees y (not x or a) and responds with $b \in\{+,-\}$

Matching Pennies against Nature

Game protocol

- N moves first with $x y \in\{0,1\}^{2}$
- A sees x (not y or b) and responds with $a \in\{+,-\}$
- B sees y (not x or a) and responds with $b \in\{+,-\}$

Remark

They play a game of imperfect information.

Coordinating pennies: Strategies

- N's moves $x y$ are random and uniformly distributed.
- A and B should coordinate to specify
- A's strategy: probability distribution $p(a \mid x)$
- B's strategy: probability distribution $p(b \mid y)$ to maximize their payoffs.

Coordinating pennies: Payoffs

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning

$$
\mathbb{U}_{A B}=\frac{1}{4}\left(\mathbb{E}_{A B}(00)+\mathbb{E}_{A B}(01)+\mathbb{E}_{A B}(10)-\mathbb{E}_{A B}(11)\right)
$$

$$
\mathbb{E}_{A B}(x y)=\sum_{a, b \in M_{A B}} a \cdot b \cdot p(a b \mid x y)
$$

where we muliply $a, b \in\{+,-\}$ as if they are +1 and -1

Hidden Variable Theorem

Theorem

If the mutual dependency of x and y is expressed by a variable $\lambda \in \Lambda$ with density $q: \Lambda \rightarrow[0,1]$, so that

$$
\begin{equation*}
p(a b \mid x y)=\int_{\Lambda} p(a \mid x, \lambda) \cdot p(b \mid y, \lambda) \cdot q(\lambda) d \lambda \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{U}_{A B} \leq \frac{1}{2} \tag{2}
\end{equation*}
$$

Hidden Variable Theorem

GPD GTP?

Dusko Pavlovic

Proof
Write

GPD GTP?
Dusko Pavlovic
Pennies
Game
No Winning
Winning
Question

Hidden Variable Theorem

Proof

Then

Pennies
Game
No Winning
Winning

$$
\mathbb{U}_{A B}=\int_{\Lambda} \mathbb{U}_{A B}(\lambda) \cdot q(\lambda) d \lambda
$$

for

$$
\begin{array}{r}
\mathbb{U}_{A B}(\lambda)=\frac{1}{4}\left(\mathbb{E}_{A}(0, \lambda) \cdot \mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{A}(0, \lambda) \cdot \mathbb{E}_{B}(1, \lambda)+\right. \\
\left.\mathbb{E}_{A}(1, \lambda) \cdot \mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{A}(1, \lambda) \cdot \mathbb{E}_{B}(1, \lambda)\right)
\end{array}
$$

Hidden Variable Theorem

Proof

Then

GPD GTP?

Dusko Pavlovic

Pennies

Game
No Winning
Winning
Question

$$
\mathbb{U}_{A B}=\int_{\Lambda} \mathbb{U}_{A B}(\lambda) \cdot q(\lambda) d \lambda
$$

for

$$
\begin{array}{r}
\mathbb{U}_{A B}(\lambda)=\frac{1}{4}\left(\mathbb{E}_{A}(0, \lambda) \cdot \mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{A}(0, \lambda) \cdot \mathbb{E}_{B}(1, \lambda)+\right. \\
\left.\mathbb{E}_{A}(1, \lambda) \cdot \mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{A}(1, \lambda) \cdot \mathbb{E}_{B}(1, \lambda)\right) \\
=\frac{1}{4}\left(\mathbb{E}_{A}(0, \lambda) \cdot\left(\mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{B}(1, \lambda)\right)+\right. \\
\left.\mathbb{E}_{A}(1, \lambda) \cdot\left(\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)\right)\right)
\end{array}
$$

Hidden Variable Theorem

Proof

Since $-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$

GPD GTP?

Dusko Pavlovic

Pennies

Game
No Winning

Winning

$$
\mathbb{U}_{A B}(\lambda) \leq \frac{1}{4}\left(\left|\mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{B}(1, \lambda)\right|+\left|\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)\right|\right)
$$

Hidden Variable Theorem

Proof
Since $-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$

Pennies

Game
$\mathbb{U}_{A B}(\lambda) \leq \frac{1}{4}\left(\left|\mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{B}(1, \lambda)\right|+\left|\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)\right|\right)$
If $\mathbb{E}_{B}(0, \lambda) \geq \max \left\{0, \mathbb{E}_{B}(1, \lambda)\right\}$, then it follows that

$$
\begin{aligned}
\mathbb{U}_{A B}(\lambda) & \leq \frac{1}{4}\left(\mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{B}(1, \lambda)+\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)\right) \\
& =\frac{1}{4}\left(\mathbb{E}_{B}(0, \lambda)+\mathbb{E}_{B}(0, \lambda)\right) \\
& \leq \frac{1}{2}
\end{aligned}
$$

since $0 \leq \mathbb{E}_{B}(0, \lambda) \leq 1$.

Hidden Variable Theorem

GPD GTP?

Pennies

Game

If $0 \geq \mathbb{E}_{B}(0, \lambda) \geq \mathbb{E}_{B}(1, \lambda)$, then it follows that

$$
\begin{aligned}
\mathbb{U}_{A B}(\lambda) & \leq \frac{1}{4}\left(-\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)+\mathbb{E}_{B}(0, \lambda)-\mathbb{E}_{B}(1, \lambda)\right) \\
& =\frac{1}{4}\left(-\mathbb{E}_{B}(1, \lambda)-\mathbb{E}_{B}(1, \lambda)\right) \\
& \leq \frac{1}{2}
\end{aligned}
$$

since $0 \geq \mathbb{E}_{B}(1, \lambda) \geq-1$.

Hidden Variable Theorem

Proof

Since $-1 \leq \mathbb{E}_{A}(0, \lambda), \mathbb{E}_{A}(1, \lambda) \leq 1$

Pennies

Game

If $\mathbb{E}_{B}(0, \lambda) \leq \mathbb{E}_{B}(1, \lambda)$, then the two analogous cases again give

$$
\mathbb{U}_{A B}(\lambda) \leq \frac{1}{2}
$$

Hidden Variable Theorem

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning
Question

$$
\mathbb{U}_{A B}=\int_{\Lambda} \mathbb{U}_{A B}(\lambda) \cdot q(\lambda) d \lambda \leq \int_{\Lambda} \frac{1}{2} q(\lambda) d \lambda=\frac{1}{2}
$$

Hidden Variable Theorem

Interpretation
Suppose that

- A, B and N repeat the game infinitely often, and
- A and B invest $\$ \frac{1}{2}$ each for every bet.

Hidden Variable Theorem

Interpretation
Suppose that

- A, B and N repeat the game infinitely often, and
- A and B invest $\$ \frac{1}{2}$ each for every bet.

Since N's moves are uniformly distributed, A and B 's chances are

- $\frac{3}{4}$ to win $\$ 1$
- $\frac{1}{4}$ to lose $\$ 1$
i.e. the expected winnings for each of them are

$$
\frac{3}{4}(\$ 1)+\frac{1}{4}(-\$ 1)=\$ \frac{1}{2}
$$

Hidden Variable Theorem

Interpretation

- So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged.

Game

Hidden Variable Theorem

Interpretation

- So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged.
- This is the Nash equilibrium of Matching Pennies.

Hidden Variable Theorem

Interpretation

- So if A and B randomize their moves uniformly, in the long run their wealth remains unchanged.
- This is the Nash equilibrium of Matching Pennies.
- The question is whether they can increase their wealth by coordinating.
- The answer suggested by the Theorem is NO.

Hidden Variable Theorem

Another suspicion

Dusko Pavlovic

- Is averaging out the hidden variable λ really the only way in which A and B can coordinate?
- Maybe not?

Idea

GPD GTP?

Dusko Pavlovic

E.g., they could also use entangled photons

Idea

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning
Question

Plants extract their strategic advantage similarly: photosynthesis is a quantum effect!

Disproving the Theorem

Claim

Using a physical device, A and B can disprove the Hidden Variable Theorem.

Disproving the Theorem

Claim

Using a physical device, A and B can disprove the Hidden Variable Theorem.

More precisely
Measuring entangled photons, A and B can coordinate their strategies to match pennies against N in such a way that their wealth will increase, infinitely in the long run.

Disproving the Theorem

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning

Question

Disproving the Theorem

A and B 's preparation

- The device emits \vec{x} and \vec{y} in the singlet state

$$
\psi=\frac{|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle}{\sqrt{2}}=\frac{|\rightarrow \leftarrow\rangle-|\leftarrow \rightarrow\rangle}{\sqrt{2}}
$$

- A measures the spin of \vec{x} in the basis

$$
\left\{\begin{array}{ll}
|\downarrow\rangle, & |\uparrow\rangle
\end{array}\right\}
$$

- B measures the spin of \vec{y} in the basis

$$
\left\{|\rightarrow\rangle=\frac{-(|\downarrow\rangle+|\uparrow\rangle)}{\sqrt{2}}, \quad|\leftarrow\rangle=\frac{-(|\downarrow\rangle-|\uparrow\rangle)}{\sqrt{2}}\right\}
$$

Disproving the Theorem

A and B 's strategy
The response to N 's move $x y \in\{00,01,10,11\}$ is:

- A sees $x \in\{0,1\}$
- if $x=0$ measure $|\downarrow\rangle$
- if $x=1$ measure $|\uparrow\rangle$
- if yes then play $a=+$
- otherwise play $a=-$
- B sees $y \in\{0,1\}$
- if $y=0$ measure $|\rightarrow\rangle$
- if $y=1$ measure $|\leftarrow\rangle$
- if yes then play $b=+$
- otherwise play $b=-$

Disproving the Theorem

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning
Question

$$
\begin{aligned}
& \mathbb{E}_{A B}(00)=\mathbb{E}_{A B}(01)= \mathbb{E}_{A B}(10)=\frac{1}{\sqrt{2}} \\
& \mathbb{E}_{A B}(11)=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathbb{U}_{A B} & =\frac{1}{4}\left(\mathbb{E}_{A B}(00)+\mathbb{E}_{A B}(01)+\mathbb{E}_{A B}(10)-\mathbb{E}_{A B}(11)\right) \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

Disproving the Theorem

GPD GTP?

Dusko Pavlovic

Pennies
Game
No Winning
Winning
Question

$$
\begin{aligned}
& \mathbb{E}_{A B}(00)=\mathbb{E}_{A B}(01)= \mathbb{E}_{A B}(10)=\frac{1}{\sqrt{2}} \\
& \mathbb{E}_{A B}(11)=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathbb{U}_{A B} & =\frac{1}{4}\left(\mathbb{E}_{A B}(00)+\mathbb{E}_{A B}(01)+\mathbb{E}_{A B}(10)-\mathbb{E}_{A B}(11)\right) \\
& =\frac{1}{\sqrt{2}}>\frac{1}{2}
\end{aligned}
$$

Empiric corollary

GPD GTP?

A and B can coordinate to win, but they coordined strategy is not realized through a hidden variable, i.e.

$$
p(a b \mid x y) \neq \int_{\Lambda} p(a \mid x) \cdot p(b \mid y) \cdot q(\lambda) d \lambda
$$

Outline

Dusko Pavlovic

Pennies
Matching Pennies

Question

Background

- A and B's strategy is based on the Einstein-Podelsky-Rosen's setup (EPR) for "spooky action at distance"
- Einstein's conclusion: since action at distance is impossible, there must be a hidden variable
- The Hidden Variable Theorem is based on John Bell's inequality.
- Quantum theoretic prediction: Bell's Inequality can be violated

Background

- A and B's strategy is based on the Einstein-Podelsky-Rosen's setup (EPR) for "spooky action at distance"
- Einstein's conclusion: since action at distance is impossible, there must be a hidden variable
- The Hidden Variable Theorem is based on John Bell's inequality.
- Quantum theoretic prediction: Bell's Inequality can be violated an experimentally confirmed

Game Theoretic Probability

What does this have to do with Game Theoretic Probability?

Philosophy of Probability

Question

Whence probability?

Answers

subjective: Because we average over hidden variables

- Bernoulli, Laplace, Einstein, 't Hooft
objective: Because God plays dice
- Darwin, Bachelier, Born, Zurek

Game Theoretic Probability

Strategy
Formulate a Probability Theory such that it

- arises from the strategies in a forecasting game
- provides a unified account of random processes
- supports subjective and objective interpretation

Physics of Probability

But the interpretations can be tested experimentally!

Physics of Probability

Question
Does God play dice?

Answers
no: The world is deterministic

- Einstein, Bohm, superstrings...
yes: The world emerges from randomness
- Bell, Aspect, quantum darwinism...

Game Theoretic Probability

Question
Can we

- provide a unified account of random processes
- that allows (thought) experimental testing?

