## Power variation and variation index

## Ilia Nouretdinov (joint work with Vladimir Vovk)

Computer Learning Research Centre Department of Computer Science University of London (RHUL)

November 2014

## Content

(1) Variation and variation index
(2) Continuous functions
(3) Cadlag functions

4 Lebesgue partition
(5) Conclusion

## Abstract

This report lists simple results about the relationship between power variation (including the standard notions of total variation and quadratic variation as special cases) and variation index, which is often used as a measure of volatility. Variation index is defined for a given sequence of partitions.

## Variation and variation index

The $p$-variation of $\omega \in \Omega_{1}$ (continuous and $\omega(0)=0$ ) is defined as

$$
\operatorname{var}_{p}(\omega)=\sup _{0=t_{0}<t_{1}<\cdots<t_{n}=1}\left|\omega\left(t_{i}\right)-\omega\left(t_{i-1}\right)\right|^{p}
$$

The variation index is the borderline value

$$
v i(\omega)=\inf \left\{p \mid \operatorname{var}_{p}(\omega)<\infty\right\}=\sup \left\{p \mid \operatorname{var}_{p}(\omega)=\infty\right\}
$$

## Power variation

A partition of $[0,1]$ is a finite sequence of numbers
$0=t_{0}<t_{1}<\cdots<t_{m} \leq 1\left(t_{k}=\infty\right.$ for $\left.k>m\right)$;
$\pi=\left(\pi^{0}, \pi^{1}, \pi^{2}, \ldots\right)$ is a nested sequence of partitions.
The $n$th approximation along $\pi$ is

$$
V_{n}(t)=A_{t}^{n, p, \pi}=\sum_{k=1}^{\infty}\left|\omega\left(\pi_{k}^{n} \wedge t\right)-\omega\left(\pi_{k-1}^{n} \wedge t\right)\right|^{p}
$$

If $A^{n, p, \pi}(t)$ converges (uniformly?) as $n \rightarrow \infty$, then its limit $V(t)=A^{p, \pi}(t)$ is called power $p$-variation of $\omega$ along $\pi$.

## Relationship set

The relationship set of $\omega \in \Omega_{1}$ is the set of all $\left(p_{1}, p_{2}\right) \in[1, \infty) \times[1, \infty)$ for which there exists $\omega$ such that:

- $\omega$ has nontrivial (non-zero) power $p_{1}$-variation along $\pi$;
- the variation index of $\omega$ is $p_{2}$.


## Riemann and Lebesgue dyadic partition sequence

Riemann dyadic sequence is $\pi=\left(\pi^{n}\right)$ where $\pi_{k}^{n}=k 2^{-n}\left(k=1, \ldots, 2^{n}\right)$.

Lebesgue dyadic sequence is defined inductively:

$$
\begin{gathered}
\pi_{0}^{n}=0 \\
\pi_{k}^{n}(\omega)=\inf \left\{t \in\left[\pi_{k-1}^{n}(\omega), 1\right] \mid \omega(t) \in\left\{k 2^{-n}\right\} \backslash\left\{\omega\left(\pi_{k-1}^{n}\right)\right\}\right\}
\end{gathered}
$$

## Continuous functions

Proposition 1. For continuous functions, the relationship set with respect to Riemann partition $\pi$ is

$$
\{(1,1)\} \cup\left\{\left(p_{1}, p_{2}\right) \in(1, \infty) \times(1, \infty] \mid p_{1} \leq p_{2}\right\} .
$$

Recall that $\left(p_{1}, p_{2}\right)$ belongs to the relationship set if there is a function $f$ which has power variation $p_{1}$ along $\pi$, but its variation index of is $p_{2}$.

We will use the facts: $p_{1} \leq p_{2}$;
fractional Brownian motion $B_{p}(t)$ with Hurst index $1 / p$ is known to have the property $p_{1}=p_{2}=p$ a.s.

## Example

Define $f$ as the function whose graph connects the points

$$
(0,0),\left(1 / 2, a_{1}\right),\left(3 / 4, a_{1}-a_{2}\right),\left(7 / 8, a_{1}-a_{2}+a_{3}\right), \ldots
$$

by straight lines in this order, where $a_{1}>a_{2}>a_{3}>\ldots>0\left(a_{n} \rightarrow 0\right)$.
What is its power $p$-variation for $p>1$ ?
For the partition $(0,1 / 2,1), V_{1}(1) \leq a_{1}^{p}+a_{2}^{p}=b_{1}+a_{2}^{p}$; for the partition $(0,1 / 4,1 / 2,3 / 4,1)$,
$V_{2}(1) \leq 2^{1-p} a_{1}^{p}+a_{2}^{p}+a_{3}^{p}=b_{2}+a_{2}^{p}$;
and so on.
In general, $b_{n}=2^{1-p} b_{n-1}+a_{n}^{p} \rightarrow 0$, therefore $V_{n}(1) \rightarrow 0$, which implies $V \rightarrow 0$ as $V$ is non-decreasing.

## Example for $1<p_{1} \leq p_{2} \leq \infty$

Let us combine two functions $B_{p}$ (Brownian motion of index $p$ ) and $f$ (with $a_{n}=n^{1 / p_{2}}$ for $1 \leq p_{2}<\infty$ or $1 / \log (n+1)$ for $p_{2}=\infty$ ):
$w(t)=B_{p_{1}}(t)$ for $0 \leq t \leq 1 / 2$;
$w(t)=w(1 / 2)+f(2 t-1)$ for $1 / 2 \leq t \leq 1$.
The first part has variation $\left(p_{1}, p_{1}\right)$, the second has $\left(1, p_{2}\right)$.
So the whole function has power variation index $p_{1}$ along Riemann partition $\pi$ and the variation index $p_{2}$.

## Cadlag functions

What is the set of possible ( $p_{1}, p_{2}$ ) is in the case of cadlag (continuous on the right and having limits on the left) functions $\Omega_{2}(\omega(0)=0)$ on $[0,1]$ ?

We already know that any combination $1<p_{1} \leq p_{2}$ is possible even for continuous functions.

But for cadlag (unlike continuous) functions the cases $p_{1}>p_{2}$ and $p_{1}<1$ also become non-trivial.
Also, a non-continuous function may have multiple values of $p_{1}$ index.

## Case $0<p_{2}<p_{1}$ : yes

Recall that $p_{1}$ is power $p$-variation index along Riemann dyadic partition $\pi, p_{2}$ is 'standard' $p$-variation index.

Consider a piecewise-constant cadlag function with 'gaps' $(-1)^{n} n^{-1 / p_{2}}$ at points $2^{-n}$.

Its standard variation index is $p_{2}$ and any number larger than $p_{2}$ can be $p_{1}$.

## Case $p_{1}<\min \left\{1, p_{2}\right\}$ : no

If this happens then for $p=\left(p_{1}+\min \left\{p_{2}, 1\right\}\right) / 2$ power $p$-variation along $\pi$ is 0 but the 'standard' $p$-variation is infinite.

But this is impossible: for cadlag functions the standard $p$-variation for $p<1$ can not be higher than the power p -variation along $\pi$.

The principal reason is: inserting new points into a partition may decrease the total variation for $p>1$ but not for $p \leq 1$.

## Case $p_{1}<\min \left\{1, p_{2}\right\}$ : no

Indeed, for $p<1$ variation never decreases after adding new points to the partition. Therefore we can consider two partitions sequences: $\pi$ and $\pi^{\prime}$ where $\pi_{n}^{\prime}=\pi_{n} \cup \rho$ where $\rho$ is a partition along which too high standard $p$-variation is achieved. Now the question becomes: is it possible that power $p$-variation along $\pi_{n}^{\prime}$ is higher that along $\pi$ ? Using sequential binary bisection, we can find a specific point $r \in \rho$ around which this effect concentrates. Let $u_{n}<r<v_{n}$ be the smallest $\pi_{n}$-interval containing $r$. If the difference between variations along $\pi^{\prime}$ and $\pi$ really exists then there are $r, \delta>0$ and $n_{0}$ such that $\left|f\left(u_{n}\right)-f(r)\right|^{p}+\left|f(r)-f\left(v_{n}\right)\right|^{p}-\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|^{p}>\delta$ for any $n>n_{0}$. But for a cadlag $f, f\left(v_{n}\right)$ tends to $f(r)$ and $f\left(u_{n}\right)$ tends to $u$, so the whole expression tends to $|u-f(r)|^{p}-|f(r)-f(r)|^{p}-|u-f(r)|^{p}=0$.

## Lebesgue dyadic partition sequence

Recall that Lebesgue dyadic sequence is defined inductively:

$$
\begin{gathered}
\pi_{0}^{n}=0 ; \\
\pi_{k}^{n}(\omega)=\inf \left\{t \in\left[\pi_{k-1}^{n}(\omega), 1\right] \mid \omega(t) \in\left\{k 2^{-n}\right\} \backslash\left\{\omega\left(\pi_{k-1}^{n}\right)\right\}\right\}
\end{gathered}
$$

For continuous functions, it is known from Bruneau that $p_{1}=p_{2}$.
For cadlag functions, any $1 \leq p_{1}<p_{2} \leq \infty$ is possible, this can be derived from Stricker's upper bound for variation.

## Lebesgue dyadic partition sequence

The definition is modified for cadlag functions: $\lambda_{0}^{n}=D_{0}^{n}=0$;

$$
\begin{gathered}
C_{k}^{n}(t)=\operatorname{conv}\left\{\omega\left(\lambda_{k-1}^{n}\right), \omega(t)\right\} \cap\left(\left\{k 2^{-n}\right\} \backslash D_{k-1}^{n}(\omega)\right) \\
\lambda_{k}^{n}(\omega)=\inf \left\{t \in\left[\lambda_{k-1}^{n}(\omega), 1\right] \mid C_{k}^{n}(t) \neq \emptyset\right\} \\
D_{k}^{n}(\omega) \in \arg \min _{D \in C_{k}^{n}(t)}\left|D-\omega\left(\lambda_{k}^{n}\right)\right|
\end{gathered}
$$

## Lebesgue dyadic partition sequence

Stricker: for any $q>p, \omega \in \Omega, \delta>0$ there exists $c(q, p)$ s.t.

$$
\operatorname{var}_{q}(\omega) \leq c\left(\theta^{q}+\theta^{q-p} \sup _{j}\left(L 2^{-j}\right)^{p} M\left(\omega, L 2^{-j}\right)\right)
$$

where $\theta=\sup _{s \in[0,1]} w(s)-\inf _{s \in[0,1]} w(s)$ and $M\left(\omega, L 2^{-j}\right)\left(D\left(\omega, L 2^{-j}\right)\right)$ is the number of upcrossings (downcrossings) of $L 2^{-j}$ by $\omega$.

This is true for any $L \geq \theta$, we will use $L$ of the form $2^{k}$.

## Lebesgue dyadic partition sequence

Suppose the power $p$-variation $V$ of $\omega \in \Omega_{2}$ exists for $p \geq 1$ and $q>p$. By Sticker's result, it is enough to prove that for an integer $j$ the total number of crossings $M\left(\omega, L 2^{-j}\right)+D\left(\omega, L 2^{-j}\right)$ is bounded above by a linear function (independent of $j$ ) of $V^{j}$ (jth approximation to $V$ ) multiplied by $2^{-j p}$.

This is achievable by calculating the crossings.

## Conclusion

Let $p_{1}$ be for power variation index along Riemann dyadic partition sequence $\pi, p_{2}$ for standard variation index.
For continuous functions, either $p_{1}=p_{2}=1$ or $1<p_{1} \leq p_{2}$; for cadlag functions, any $p_{1}$ and $p_{2}$ larger than 1 are compatible, but $p_{1}<p_{2}$ is impossible if $p_{1}<1$.

For continuous functions along Lebesgue partition sequence, $1 \leq p_{2} \leq p_{1}$.

