Power variation and *p*-variation of sample functions of stochastic processes

Rimas Norvaiša

Department of Econometric Analysis Vilnius University

15 November 2014, Guanajuato, Mexico 5th Workshop on Game-Theoretic Probability and Related Topics

Power variation of a function

Let f be a regulated function on [0,T], i.e. there exist limits

$$f(t-):=\lim_{x\uparrow t}f(x) \quad \text{and} \quad f(s+):=\lim_{x\downarrow s}f(x)$$

for each $0 \leq s < t \leq T$. Let $\lambda = \{\lambda_n : n \geq 1\}$ be a nested sequence of partitions $\lambda_n = (t_i^n)_{i=0}^{m(n)}$ of [0,T] such that $\cup_n \lambda_n$ is dense in [0,T]. Let $1 \leq p < \infty$. We say that f has p-th power λ -variation on [0,T], if there is a regulated

function V on [0,T] such that V(0)=0 and for each $0 \leq s < t \leq T$

$$V(t) - V(s) = \lim_{n \to \infty} \sum_{i=1}^{m(n)} |f((t_i^n \wedge t) \vee s) - f((t_{i-1}^n \wedge t) \vee s))|^p,$$

 $V(t) - V(t-) = |f(t) - f(t-)|^p \quad \text{and} \quad V(s+) - V(s) = |f(s+) - f(s)|^p.$

p-variation of a function

Let f be a function on [0,T] (must be regulated if it has bounded p-variation defined next).

Let $1 \leq p < \infty$.

The *p*-variation of f is the quantity $v_p(f, [0, T])$ defined to be

$$\sup\left\{\sum_{i=1}^{n} |f(t_{i}) - f(t_{i-1})|^{p} \colon (t_{i})_{i=0}^{n} \text{ is a partition of } [0,T]\right\},\$$

which may be finite or infinite.

If $v_p(f, [0, T]) < \infty$ then one says that f has bounded p-variation. The p-variation index of f is the quantity v(f, [0, T]) defined to be

$$\inf\{p \ge 1: v_p(f, [0, T]) < \infty\}.$$

if the set is non-empty and defined to be $+\infty$ otherwise.

Example: Wiener process

• Let $W = \{W(t): t \in [0, T]\}$ be a standard Wiener process. Due to results of N. Wiener (1923) and P. Lévy (1940):

$$v_p(W,[0,T]) < +\infty$$
 a.s. iff $p > 2$,

and

$$v_2(W,[0,T]) = +\infty \quad \text{ a.s.}$$

- Thus the *p*-variation index v(W, [0, T]) = 2 a.s.
- More precise information can be obtained in terms of φ-variation, defined as p-variation except that the power function x → x^p, x ≥ 0, is replaced by a function φ.
 - S. J. Taylor (1972): $v_{\psi_1}(W, [0, T]) < +\infty$ a. s., where

 $\psi_1(x) := x^2/LL(1/x), \quad 0 < x \le e^{-e}.$

Also, $v_{\psi}(W) = +\infty$ a.s. for any ψ such that $\psi_1(x) = o(\psi(x))$ as $x \downarrow 0$.

Example: Wiener process

• Let $W = \{W(t): t \in [0, T]\}$ be a standard Wiener process. Due to results of N. Wiener (1923) and P. Lévy (1940):

 $v_p(W,[0,T]) < +\infty$ a.s. iff p > 2,

and

$$v_2(W,[0,T]) = +\infty$$
 a.s.

- Thus the *p*-variation index v(W, [0, T]) = 2 a.s.
- More precise information can be obtained in terms of φ-variation, defined as p-variation except that the power function x → x^p, x ≥ 0, is replaced by a function φ.
 - S. J. Taylor (1972): $v_{\psi_1}(W, [0, T]) < +\infty$ a. s., where

 $\psi_1(x) := x^2 / LL(1/x), \quad 0 < x \le e^{-e}.$

Also, $v_{\psi}(W) = +\infty$ a.s. for any ψ such that $\psi_1(x) = o(\psi(x))$ as $x \downarrow 0$.

Example: Wiener process

• Let $W = \{W(t): t \in [0, T]\}$ be a standard Wiener process. Due to results of N. Wiener (1923) and P. Lévy (1940):

$$v_p(W, [0, T]) < +\infty$$
 a.s. iff $p > 2$,

and

$$v_2(W,[0,T]) = +\infty$$
 a.s.

- Thus the *p*-variation index v(W, [0, T]) = 2 a.s.
- More precise information can be obtained in terms of φ-variation, defined as p-variation except that the power function x → x^p, x ≥ 0, is replaced by a function φ.
 - S. J. Taylor (1972): $v_{\psi_1}(W,[0,T])<+\infty$ a. s., where

$$\psi_1(x) := x^2 / LL(1/x), \quad 0 < x \le e^{-e}.$$

Also, $v_{\psi}(W) = +\infty$ a.s. for any ψ such that $\psi_1(x) = o(\psi(x))$ as $x \downarrow 0$.

Example: fractional Brownian motion

Let $B_H = \{B_H(t): t \in [0,T]\}$ be a fractional Brownian motion with the Hurst index $H \in (0,1)$, i.e. a Gaussian stochastic process with mean zero and the covariance function

$$EB_H(t)B_H(s) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right) \quad s, t \in [0, T].$$

Let $\lambda_n = (t_i^n)_{i=0}^{m(n)}$, $n \in N$, be a sequence of partitions of [0,T] such that $\left[\max_i (t_i^n - t_{i-1}^n)\right]^{1 \wedge (2H)} \log n \to 0$ as $n \to \infty$. Then a.s.

$$\lim_{n \to \infty} \sum_{i=1}^{m(n)} \left| B_H(t_i^n) - B_H(t_{i-1}^n) \right|^{1/H} = E |\eta|^{1/H} T,$$

where η is a standard normal random variable.

Thus, almost every sample function of B_H has 1/H power λ -variation $t \mapsto c_H t$, $t \in [0, T]$. Also, a.s. $v_{1/H}(B_H, [0, T]) = +\infty$ and $v(B_H, [0, T]) = 1/H$.

Weighted power variation for a Gaussian process

• Let $X = \{X(t): t \in [0,T]\}$ be a mean zero Gaussian process s.t. there is a real valued function ρ defined on [0,T] and "equivalent" to

 $h \mapsto (E[X(s+h) - X(s)]^2)^{1/2}$

near zero uniformly in $s \in [\epsilon, T)$ for each $\epsilon > 0$. If X has stationary increments, then one can take

$$\rho(h) = (E[X(s+h) - X(s)]^2)^{1/2}$$

• Under suitable hypotheses on the covariance of X and for a suitable set of positive r we proved that a.s.

$$\lim_{n \to \infty} \sum_{i=1}^{m_n} \frac{|X(t_i^n) - X(t_{i-1}^n)|^r}{[\rho(t_i^n - t_{i-1}^n)]^r} (t_i^n - t_{i-1}^n) = E|\eta|^r T,$$
(1)

where η is a standard normal random variable, and $((t_i^n)_{i=0}^{m_n})$ is a sequence of partitions of [0,T] such that the mesh $\max_i(t_i^n - t_{i-1}^n)$ tends to zero as $n \to \infty$ sufficiently fast.

Weighted power variation for a Gaussian process

• Let $X = \{X(t): t \in [0,T]\}$ be a mean zero Gaussian process s.t. there is a real valued function ρ defined on [0,T] and "equivalent" to

 $h \mapsto (E[X(s+h) - X(s)]^2)^{1/2}$

near zero uniformly in $s \in [\epsilon, T)$ for each $\epsilon > 0$. If X has stationary increments, then one can take

$$\rho(h) = (E[X(s+h) - X(s)]^2)^{1/2}$$

• Under suitable hypotheses on the covariance of X and for a suitable set of positive r we proved that a.s.

$$\lim_{n \to \infty} \sum_{i=1}^{m_n} \frac{|X(t_i^n) - X(t_{i-1}^n)|^r}{[\rho(t_i^n - t_{i-1}^n)]^r} (t_i^n - t_{i-1}^n) = E|\eta|^r T,$$
(1)

where η is a standard normal random variable, and $((t_i^n)_{i=0}^{m_n})$ is a sequence of partitions of [0,T] such that the mesh $\max_i(t_i^n - t_{i-1}^n)$ tends to zero as $n \to \infty$ sufficiently fast.

Partial sum process

Let X_1, X_2, \ldots be real random variables. For each $n = 1, 2, \ldots$, let S_n be the *n*-th partial sum process

$$S_n(t) := X_1 + \dots + X_{\lfloor tn \rfloor}, \quad t \in [0, 1],$$

Thus for each $n = 1, 2, \ldots$ and $t \in [0, 1]$,

$$S_n(t) = \begin{cases} 0, & \text{if } t \in [0, 1/n), \\ X_1 + \dots + X_k, & \text{if } t \in [\frac{k}{n}, \frac{k+1}{n}), \\ & k \in \{1, \dots, n-1\}, \\ X_1 + \dots + X_n, & \text{if } t = 1. \end{cases}$$

Then for any $p\in (0,\infty)$,

$$v_p(S_n, [0, 1]) = \max\left\{\sum_{j=1}^m \left|X_{k_{j-1}+1} + \dots + X_{k_j}\right|^p\right\}$$

where the maximum is taken over $0 = k_0 < \cdots < k_m = n$ and $1 \le m \le n$.

Partial sum process

Let X_1, X_2, \ldots be real random variables. For each $n = 1, 2, \ldots$, let S_n be the *n*-th partial sum process

$$S_n(t) := X_1 + \dots + X_{\lfloor tn \rfloor}, \quad t \in [0, 1],$$

Thus for each $n = 1, 2, \ldots$ and $t \in [0, 1]$,

$$S_n(t) = \begin{cases} 0, & \text{if } t \in [0, 1/n), \\ X_1 + \dots + X_k, & \text{if } t \in [\frac{k}{n}, \frac{k+1}{n}), \\ k \in \{1, \dots, n-1\}, \\ X_1 + \dots + X_n, & \text{if } t = 1. \end{cases}$$

Then for any $p \in (0, \infty)$,

$$v_p(S_n, [0, 1]) = \max\left\{\sum_{j=1}^m \left|X_{k_{j-1}+1} + \dots + X_{k_j}\right|^p\right\},\$$

where the maximum is taken over $0 = k_0 < \cdots < k_m = n$ and $1 \le m \le n$.

• J. Bretagnolle (1972): given $p \in (0,2)$ there exists a finite constant C_p such that

$$\left(\sum_{i=1}^{n} E|X_i|^p \le\right) Ev_p(S_n) \le C_p \sum_{i=1}^{n} E|X_i|^p,$$

provided X_1, X_2, \ldots are independent, $E|X_i|^p < \infty$ and $EX_i = 0$ if p > 1.

• Suppose that X_1, X_2, \ldots are independent identically distributed real random variables, $EX_1 = 0$ and $EX_1^2 = 1$. Let $Lx := \max\{1, \log x\}$, x > 0.

J. Qian (1998): boundedness in probability

 $v_2(S_n) = O_P(nLLn)$ as $n \to \infty$.

• Also, $O_P(nLLn)$ cannot be replaced by $o_p(nLLn)$, if in addition $E|X_1|^{2+\epsilon} < \infty$ for some $\epsilon > 0$.

• J. Bretagnolle (1972): given $p \in (0,2)$ there exists a finite constant C_p such that

$$\left(\sum_{i=1}^{n} E|X_i|^p \le\right) Ev_p(S_n) \le C_p \sum_{i=1}^{n} E|X_i|^p,$$

provided X_1, X_2, \ldots are independent, $E|X_i|^p < \infty$ and $EX_i = 0$ if p > 1.

- Suppose that X_1, X_2, \ldots are independent identically distributed real random variables, $EX_1 = 0$ and $EX_1^2 = 1$. Let $Lx := \max\{1, \log x\}$, x > 0.
 - J. Qian (1998): boundedness in probability

$$v_2(S_n) = O_P(nLLn) \quad \text{ as } n \to \infty.$$

• Also, $O_P(nLLn)$ cannot be replaced by $o_p(nLLn)$, if in addition $E|X_1|^{2+\epsilon} < \infty$ for some $\epsilon > 0$.

• J. Bretagnolle (1972): given $p \in (0,2)$ there exists a finite constant C_p such that

$$\left(\sum_{i=1}^{n} E|X_i|^p \le\right) Ev_p(S_n) \le C_p \sum_{i=1}^{n} E|X_i|^p,$$

provided X_1, X_2, \ldots are independent, $E|X_i|^p < \infty$ and $EX_i = 0$ if p > 1.

- Suppose that X_1, X_2, \ldots are independent identically distributed real random variables, $EX_1 = 0$ and $EX_1^2 = 1$. Let $Lx := \max\{1, \log x\}$, x > 0.
 - J. Qian (1998): boundedness in probability

$$v_2(S_n) = O_P(nLLn)$$
 as $n \to \infty$.

• Also, $O_P(nLLn)$ cannot be replaced by $o_p(nLLn)$, if in addition $E|X_1|^{2+\epsilon} < \infty$ for some $\epsilon > 0$.

• *R. Norvaiša* and *A. Račkauskas* (2008): Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables and let S_n be the *n*-th partial sum process.

The convergence in law (in the sense of *Hoffmann-Jørgensen*)

 $n^{-1/2}S_n \Rightarrow \sigma W$ in $\mathcal{W}_p[0,1]$ as $n \to \infty$

holds if and only if

$$EX_1 = 0$$
 and $\sigma^2 := EX_1^2 < \infty$.

Here $\mathcal{W}_p[0,1]$ is the Banach space of functions f on [0,1] having bounded p-variation with respect to the norm

$$||f||_{[p]} := ||f||_{\sup,[0,1]} + v_p(f,[0,1])^{1/p}.$$

• In particular, the convergence in distribution

 $n^{-p/2}v_p(S_n,[0,1])\to \sigma^p v_p(W,[0,1]) \quad \text{as } n\to\infty$

holds.

• *R. Norvaiša* and *A. Račkauskas* (2008): Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables and let S_n be the *n*-th partial sum process.

The convergence in law (in the sense of *Hoffmann-Jørgensen*)

 $n^{-1/2}S_n \Rightarrow \sigma W$ in $\mathcal{W}_p[0,1]$ as $n \to \infty$

holds if and only if

$$EX_1 = 0$$
 and $\sigma^2 := EX_1^2 < \infty$.

Here $\mathcal{W}_p[0,1]$ is the Banach space of functions f on [0,1] having bounded p-variation with respect to the norm

$$||f||_{[p]} := ||f||_{\sup,[0,1]} + v_p(f,[0,1])^{1/p}.$$

• In particular, the convergence in distribution

$$n^{-p/2}v_p(S_n,[0,1]) \to \sigma^p v_p(W,[0,1]) \quad \text{as } n \to \infty$$

holds.

For a comparison

It is interesting to compare this fact with the related convergence of smoothed partial sum processes with respect to the α-Hölder norm. Let S
_n be a (random) function obtained from S_n by linear interpolation between points

$$\left(\frac{k}{n}, S_n\left(\frac{k}{n}\right)\right)$$
 ir $\left(\frac{k+1}{n}, S_n\left(\frac{k+1}{n}\right)\right)$

 $k=0,1,\ldots,n-1.$

• A. Račkauskas and C. Suquet (2004): Let p > 2. Convergence in law

 $n^{-1/2} ilde{S}_n \Rightarrow \sigma W$ in $\mathcal{H}^0_{1/p}[0,1]$ as $n o \infty$

holds if and only if

 $EX_1 = 0$ and $\lim_{t\to\infty} t \Pr(\{|X_1| > t^{1/2 - 1/p}\}) = 0.$

For a comparison

It is interesting to compare this fact with the related convergence of smoothed partial sum processes with respect to the α-Hölder norm. Let S
_n be a (random) function obtained from S_n by linear interpolation between points

$$\left(\frac{k}{n}, S_n\left(\frac{k}{n}\right)\right)$$
 ir $\left(\frac{k+1}{n}, S_n\left(\frac{k+1}{n}\right)\right)$

 $k=0,1,\ldots,n-1.$

• A. Račkauskas and C. Suquet (2004): Let p > 2. Convergence in law

$$n^{-1/2} \tilde{S}_n \Rightarrow \sigma W$$
 in $\mathcal{H}^0_{1/p}[0,1]$ as $n \to \infty$

holds if and only if

$$EX_1 = 0$$
 and $\lim_{t\to\infty} t \Pr(\{|X_1| > t^{1/2 - 1/p}\}) = 0.$

Why we do what we do?

To develop calculus without probability:

- analysis of integral equations with respect to rough functions (having unbounded variation);
- analysis of nonlinear functionals and operators acting on the Banach space of functions of bounded *p*-variation;
- statistical analysis of the index of *p*-variation for sample functions of various stochastic processes.

Some publications:

[1] R.M. Dudley and R.N. Differentiability of Six Operators on Nonsmooth Functions and *p*-variation. Lecture Notes in Mathematics, vol. 1703, 1999.

 [2] R.N. Quadratic variation, p-variation and integration with applications to stock price modelling. arXiv: 010890[math.CA], 2001.
 [3] R.M. Dudley and R.N. Concrete Functional Calculus. Springer, 2010.

Why we do what we do?

To develop calculus without probability:

- analysis of integral equations with respect to rough functions (having unbounded variation);
- analysis of nonlinear functionals and operators acting on the Banach space of functions of bounded *p*-variation;
- statistical analysis of the index of *p*-variation for sample functions of various stochastic processes.

Some publications:

[1] R.M. Dudley and R.N. Differentiability of Six Operators on Nonsmooth Functions and *p*-variation. Lecture Notes in Mathematics, vol. 1703, 1999.

[2] R.N. Quadratic variation, *p*-variation and integration with applications to stock price modelling. arXiv: 010890[math.CA], 2001.
[3] R.M. Dudley and R.N. Concrete Functional Calculus. Springer, 2010.