Power variation and p-variation of sample functions of stochastic processes

Rimas Norvaiša
Department of Econometric Analysis
Vilnius University

15 November 2014, Guanajuato, Mexico 5th Workshop on Game-Theoretic Probability and Related Topics

Power variation of a function

Let f be a regulated function on $[0, T]$, i.e. there exist limits

$$
f(t-):=\lim _{x \uparrow t} f(x) \quad \text { and } \quad f(s+):=\lim _{x \downarrow s} f(x)
$$

for each $0 \leq s<t \leq T$.
Let $\lambda=\left\{\lambda_{n}: n \geq 1\right\}$ be a nested sequence of partitions $\lambda_{n}=\left(t_{i}^{n}\right)_{i=0}^{m(n)}$ of $[0, T]$ such that $\cup_{n} \lambda_{n}$ is dense in $[0, T]$.
Let $1 \leq p<\infty$.
We say that f has p-th power λ-variation on $[0, T]$, if there is a regulated function V on $[0, T]$ such that $V(0)=0$ and for each $0 \leq s<t \leq T$

$$
\begin{gathered}
\left.V(t)-V(s)=\lim _{n \rightarrow \infty} \sum_{i=1}^{m(n)} \mid f\left(\left(t_{i}^{n} \wedge t\right) \vee s\right)-f\left(\left(t_{i-1}^{n} \wedge t\right) \vee s\right)\right)\left.\right|^{p} \\
V(t)-V(t-)=|f(t)-f(t-)|^{p} \quad \text { and } \quad V(s+)-V(s)=|f(s+)-f(s)|^{p} .
\end{gathered}
$$

p-variation of a function

Let f be a function on $[0, T]$ (must be regulated if it has bounded p-variation defined next).
Let $1 \leq p<\infty$.
The p-variation of f is the quantity $v_{p}(f,[0, T])$ defined to be

$$
\sup \left\{\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}:\left(t_{i}\right)_{i=0}^{n} \text { is a partition of }[0, T]\right\}
$$

which may be finite or infinite.
If $v_{p}(f,[0, T])<\infty$ then one says that f has bounded p-variation. The p-variation index of f is the quantity $v(f,[0, T])$ defined to be

$$
\inf \left\{p \geq 1: v_{p}(f,[0, T])<\infty\right\}
$$

if the set is non-empty and defined to be $+\infty$ otherwise.

Example: Wiener process

- Let $W=\{W(t): t \in[0, T]\}$ be a standard Wiener process.

Due to results of N. Wiener (1923) and P. Lévy (1940):

$$
v_{p}(W,[0, T])<+\infty \quad \text { a.s. iff } p>2
$$

and

$$
v_{2}(W,[0, T])=+\infty \quad \text { a.s. }
$$

Example: Wiener process

- Let $W=\{W(t): t \in[0, T]\}$ be a standard Wiener process.

Due to results of N. Wiener (1923) and P. Lévy (1940):

$$
v_{p}(W,[0, T])<+\infty \quad \text { a.s. iff } p>2
$$

and

$$
v_{2}(W,[0, T])=+\infty \quad \text { a.s. }
$$

- Thus the p-variation index $v(W,[0, T])=2$ a.s.

Example: Wiener process

- Let $W=\{W(t): t \in[0, T]\}$ be a standard Wiener process.

Due to results of N. Wiener (1923) and P. Lévy (1940):

$$
v_{p}(W,[0, T])<+\infty \quad \text { a.s. iff } p>2
$$

and

$$
v_{2}(W,[0, T])=+\infty \quad \text { a.s. }
$$

- Thus the p-variation index $v(W,[0, T])=2$ a.s.
- More precise information can be obtained in terms of ϕ-variation, defined as p-variation except that the power function $x \mapsto x^{p}, x \geq 0$, is replaced by a function ϕ.
S. J. Taylor (1972): $v_{\psi_{1}}(W,[0, T])<+\infty$ a. s., where

$$
\psi_{1}(x):=x^{2} / L L(1 / x), \quad 0<x \leq e^{-e} .
$$

Also, $v_{\psi}(W)=+\infty$ a.s. for any ψ such that $\psi_{1}(x)=o(\psi(x))$ as $x \downarrow 0$.

Example: fractional Brownian motion

Let $B_{H}=\left\{B_{H}(t): t \in[0, T]\right\}$ be a fractional Brownian motion with the Hurst index $H \in(0,1)$, i.e. a Gaussian stochastic process with mean zero and the covariance function

$$
E B_{H}(t) B_{H}(s)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) \quad s, t \in[0, T] .
$$

Let $\lambda_{n}=\left(t_{i}^{n}\right)_{i=0}^{m(n)}, n \in N$, be a sequence of partitions of $[0, T]$ such that $\left[\max _{i}\left(t_{i}^{n}-t_{i-1}^{n}\right)\right]^{1 \wedge(2 H)} \log n \rightarrow 0$ as $n \rightarrow \infty$. Then a.s.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{m(n)}\left|B_{H}\left(t_{i}^{n}\right)-B_{H}\left(t_{i-1}^{n}\right)\right|^{1 / H}=E|\eta|^{1 / H} T
$$

where η is a standard normal random variable.
Thus, almost every sample function of B_{H} has $1 / H$ power λ-variation $t \mapsto c_{H} t, t \in[0, T]$.
Also, a.s. $v_{1 / H}\left(B_{H},[0, T]\right)=+\infty$ and $v\left(B_{H},[0, T]\right)=1 / H$.

Weighted power variation for a Gaussian process

- Let $X=\{X(t): t \in[0, T]\}$ be a mean zero Gaussian process s.t. there is a real valued function ρ defined on $[0, T]$ and "equivalent" to

$$
h \mapsto\left(E[X(s+h)-X(s)]^{2}\right)^{1 / 2}
$$

near zero uniformly in $s \in[\epsilon, T)$ for each $\epsilon>0$.
If X has stationary increments, then one can take

$$
\rho(h)=\left(E[X(s+h)-X(s)]^{2}\right)^{1 / 2} .
$$

Weighted power variation for a Gaussian process

- Let $X=\{X(t): t \in[0, T]\}$ be a mean zero Gaussian process s.t. there is a real valued function ρ defined on $[0, T]$ and "equivalent" to

$$
h \mapsto\left(E[X(s+h)-X(s)]^{2}\right)^{1 / 2}
$$

near zero uniformly in $s \in[\epsilon, T)$ for each $\epsilon>0$.
If X has stationary increments, then one can take

$$
\rho(h)=\left(E[X(s+h)-X(s)]^{2}\right)^{1 / 2} .
$$

- Under suitable hypotheses on the covariance of X and for a suitable set of positive r we proved that a.s.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{m_{n}} \frac{\left|X\left(t_{i}^{n}\right)-X\left(t_{i-1}^{n}\right)\right|^{r}}{\left[\rho\left(t_{i}^{n}-t_{i-1}^{n}\right)\right]^{r}}\left(t_{i}^{n}-t_{i-1}^{n}\right)=E|\eta|^{r} T \tag{1}
\end{equation*}
$$

where η is a standard normal random variable, and $\left(\left(t_{i}^{n}\right)_{i=0}^{m_{n}}\right)$ is a sequence of partitions of $[0, T]$ such that the $\operatorname{mesh}_{\max _{i}\left(t_{i}^{n}-t_{i-1}^{n}\right)}$ tends to zero as $n \rightarrow \infty$ sufficiently fast.

Partial sum process

Let X_{1}, X_{2}, \ldots be real random variables. For each $n=1,2, \ldots$, let S_{n} be the n-th partial sum process

$$
S_{n}(t):=X_{1}+\cdots+X_{\lfloor t n\rfloor}, \quad t \in[0,1]
$$

Thus for each $n=1,2, \ldots$ and $t \in[0,1]$,

$$
S_{n}(t)= \begin{cases}0, & \text { if } t \in[0,1 / n) \\ X_{1}+\cdots+X_{k}, & \text { if } t \in\left[\frac{k}{n}, \frac{k+1}{n}\right) \\ & k \in\{1, \ldots, n-1\} \\ X_{1}+\cdots+X_{n}, & \text { if } t=1\end{cases}
$$

Partial sum process

Let X_{1}, X_{2}, \ldots be real random variables. For each $n=1,2, \ldots$, let S_{n} be the n-th partial sum process

$$
S_{n}(t):=X_{1}+\cdots+X_{\lfloor t n\rfloor}, \quad t \in[0,1]
$$

Thus for each $n=1,2, \ldots$ and $t \in[0,1]$,

$$
S_{n}(t)= \begin{cases}0, & \text { if } t \in[0,1 / n) \\ X_{1}+\cdots+X_{k}, & \text { if } t \in\left[\frac{k}{n}, \frac{k+1}{n}\right) \\ & k \in\{1, \ldots, n-1\} \\ X_{1}+\cdots+X_{n}, & \text { if } t=1\end{cases}
$$

Then for any $p \in(0, \infty)$,

$$
v_{p}\left(S_{n},[0,1]\right)=\max \left\{\sum_{j=1}^{m}\left|X_{k_{j-1}+1}+\cdots+X_{k_{j}}\right|^{p}\right\}
$$

where the maximum is taken over $0=k_{0}<\cdots<k_{m}=n$ and $1 \leq m \leq n$.

p-variation of partial sum process

- J. Bretagnolle (1972): given $p \in(0,2)$ there exists a finite constant C_{p} such that

$$
\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{p} \leq\right) E v_{p}\left(S_{n}\right) \leq C_{p} \sum_{i=1}^{n} E\left|X_{i}\right|^{p}
$$

provided X_{1}, X_{2}, \ldots are independent, $E\left|X_{i}\right|^{p}<\infty$ and $E X_{i}=0$ if $p>1$.

p-variation of partial sum process

- J. Bretagnolle (1972): given $p \in(0,2)$ there exists a finite constant C_{p} such that

$$
\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{p} \leq\right) E v_{p}\left(S_{n}\right) \leq C_{p} \sum_{i=1}^{n} E\left|X_{i}\right|^{p}
$$

provided X_{1}, X_{2}, \ldots are independent, $E\left|X_{i}\right|^{p}<\infty$ and $E X_{i}=0$ if $p>1$.

- Suppose that X_{1}, X_{2}, \ldots are independent identically distributed real random variables, $E X_{1}=0$ and $E X_{1}^{2}=1$. Let $L x:=\max \{1, \log x\}$, $x>0$.
J. Qian (1998): boundedness in probability

$$
v_{2}\left(S_{n}\right)=O_{P}(n L L n) \quad \text { as } n \rightarrow \infty .
$$

p-variation of partial sum process

- J. Bretagnolle (1972): given $p \in(0,2)$ there exists a finite constant C_{p} such that

$$
\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{p} \leq\right) E v_{p}\left(S_{n}\right) \leq C_{p} \sum_{i=1}^{n} E\left|X_{i}\right|^{p}
$$

provided X_{1}, X_{2}, \ldots are independent, $E\left|X_{i}\right|^{p}<\infty$ and $E X_{i}=0$ if $p>1$.

- Suppose that X_{1}, X_{2}, \ldots are independent identically distributed real random variables, $E X_{1}=0$ and $E X_{1}^{2}=1$. Let $L x:=\max \{1, \log x\}$, $x>0$.
J. Qian (1998): boundedness in probability

$$
v_{2}\left(S_{n}\right)=O_{P}(n L L n) \quad \text { as } n \rightarrow \infty
$$

- Also, $O_{P}(n L L n)$ cannot be replaced by $o_{p}(n L L n)$, if in addition $E\left|X_{1}\right|^{2+\epsilon}<\infty$ for some $\epsilon>0$.

p-variation of partial sum process

- R. Norvaiša and A. Račkauskas (2008): Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables and let S_{n} be the n-th partial sum process.
The convergence in law (in the sense of Hoffmann-Jørgensen)

$$
n^{-1 / 2} S_{n} \Rightarrow \sigma W \quad \text { in } \mathcal{W}_{p}[0,1] \text { as } n \rightarrow \infty
$$

holds if and only if

$$
E X_{1}=0 \text { and } \sigma^{2}:=E X_{1}^{2}<\infty
$$

Here $\mathcal{W}_{p}[0,1]$ is the Banach space of functions f on $[0,1]$ having bounded p-variation with respect to the norm

$$
\|f\|_{[p]}:=\|f\|_{\text {sup },[0,1]}+v_{p}(f,[0,1])^{1 / p}
$$

p-variation of partial sum process

- R. Norvaiša and A. Račkauskas (2008): Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables and let S_{n} be the n-th partial sum process.
The convergence in law (in the sense of Hoffmann-Jørgensen)

$$
n^{-1 / 2} S_{n} \Rightarrow \sigma W \quad \text { in } \mathcal{W}_{p}[0,1] \text { as } n \rightarrow \infty
$$

holds if and only if

$$
E X_{1}=0 \text { and } \sigma^{2}:=E X_{1}^{2}<\infty
$$

Here $\mathcal{W}_{p}[0,1]$ is the Banach space of functions f on $[0,1]$ having bounded p-variation with respect to the norm

$$
\|f\|_{[p]}:=\|f\|_{\text {sup },[0,1]}+v_{p}(f,[0,1])^{1 / p}
$$

- In particular, the convergence in distribution

$$
n^{-p / 2} v_{p}\left(S_{n},[0,1]\right) \rightarrow \sigma^{p} v_{p}(W,[0,1]) \quad \text { as } n \rightarrow \infty
$$

holds.

For a comparison

- It is interesting to compare this fact with the related convergence of smoothed partial sum processes with respect to the α-Hölder norm. Let \tilde{S}_{n} be a (random) function obtained from S_{n} by linear interpolation between points

$$
\begin{aligned}
& \quad\left(\frac{k}{n}, S_{n}\left(\frac{k}{n}\right)\right) \quad \text { ir } \quad\left(\frac{k+1}{n}, S_{n}\left(\frac{k+1}{n}\right)\right) \\
& k=0,1, \ldots, n-1 .
\end{aligned}
$$

For a comparison

- It is interesting to compare this fact with the related convergence of smoothed partial sum processes with respect to the α-Hölder norm. Let \tilde{S}_{n} be a (random) function obtained from S_{n} by linear interpolation between points

$$
\begin{aligned}
& \quad\left(\frac{k}{n}, S_{n}\left(\frac{k}{n}\right)\right) \quad \text { ir } \quad\left(\frac{k+1}{n}, S_{n}\left(\frac{k+1}{n}\right)\right) \\
& k=0,1, \ldots, n-1 .
\end{aligned}
$$

- A. Račkauskas and C. Suquet (2004): Let $p>2$. Convergence in law

$$
n^{-1 / 2} \tilde{S}_{n} \Rightarrow \sigma W \quad \text { in } \mathcal{H}_{1 / p}^{0}[0,1] \text { as } n \rightarrow \infty
$$

holds if and only if

$$
E X_{1}=0 \text { and } \lim _{t \rightarrow \infty} t \operatorname{Pr}\left(\left\{\left|X_{1}\right|>t^{1 / 2-1 / p}\right\}\right)=0 .
$$

Why we do what we do?

To develop calculus without probability:

- analysis of integral equations with respect to rough functions (having unbounded variation);
- analysis of nonlinear functionals and operators acting on the Banach space of functions of bounded p-variation;
- statistical analysis of the index of p-variation for sample functions of various stochastic processes.

Why we do what we do?

To develop calculus without probability:

- analysis of integral equations with respect to rough functions (having unbounded variation);
- analysis of nonlinear functionals and operators acting on the Banach space of functions of bounded p-variation;
- statistical analysis of the index of p-variation for sample functions of various stochastic processes.
Some publications:
[1] R.M. Dudley and R.N. Differentiability of Six Operators on Nonsmooth Functions and p-variation. Lecture Notes in Mathematics, vol. 1703, 1999.
[2] R.N. Quadratic variation, p-variation and integration with applications to stock price modelling. arXiv: 010890[math.CA], 2001. [3] R.M. Dudley and R.N. Concrete Functional Calculus. Springer, 2010.

