Games for discrete-time Markov chain and their application to verification

Shota Nakagawa

The University of Tokyo

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

Model-Checking

Shota Nakagawa

Probabilistic Model-Checking

Discrete-Time Markov Chain

• As a random process

Def.

A (finite or countable) state space S and random variables X_1, X_2, X_3, \dots such that $Pr(X_{n+1} = s \mid X_1 = s_1, \dots, X_n = s_n) = Pr(X_2 = s \mid X_1 = s_n)$

Discrete-Time Markov Chain

• As a random process

Def.

A (finite or countable) state space S and random variables X_1, X_2, X_3, \dots such that $Pr(X_{n+1} = s \mid X_1 = s_1, \dots, X_n = s_n) = Pr(X_2 = s \mid X_1 = s_n)$

• As a transition system

Def.

A pair (S, P) of

- a (finite or countable) state space S and
- a stochastic matrix $P: S \times S \rightarrow [0,1]$ (transition)
- Connection between two definitions: $P(s,s') = Pr(X_2 = s' | X_1 = s)$

Discrete-Time Markov Chain

• As a random process

Def.

A (finite or countable) state space S and random variables X_1, X_2, X_3, \dots such that $Pr(X_{n+1} = s \mid X_1 = s_1, \dots, X_n = s_p) = Pr(X_2 = s \mid X_1 = s_p)$

As a transition system

Def.

A pair (S, P) of

- a (finite or countable) state
- a stochastic matrix $P : S \times S$

Shota Nakagawa

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

Applications to model-checking

- Connection between GTP and model-checking
 - One step of transitions ⇔ One round of games.

Applications to model-checking

- Connection between GTP and model-checking
 - One step of transitions ⇔ One round of games.
- Long term goals
 - Get efficient model-checking algorithms, models or expressions of specifications

Applications to model-checking

- Connection between GTP and model-checking
 - One step of transitions ⇔ One round of games.
- Long term goals
 - Get efficient model-checking algorithms, models or expressions of specifications
- In my BSc thesis
 - Formulate DTMC in terms of GTP and
 - Give proofs of some known theorems by using GTP

Game for DTMC

Parameter: $S, P, x_0 \in S$ Protocol: $K_0 := 1$. FOR n = 1, 2, ...: Skeptic announces a function $f_n : S \to \mathbb{R}$. Reality announces $x_n \in \{s \in S \mid P(x_{n-1}, s) > 0\}$. $K_n := K_{n-1} + f_n(x_n) - \sum_{s \in S} f_n(s)P(x_{n-1}, s)$.

Game for DTMC

 $\begin{array}{ll} \textit{Parameter: } S, P, x_0 \in S \\ \textit{Protocol:} & & \\ K_0 \mathrel{\mathop:}= 1. & \\ \textit{FOR } n = 1, 2, \ldots : & \\ \textit{Skeptic announces a function } f_n \mathrel{\mathop:} S \rightarrow \mathbb{R}. \\ \textit{Reality announces } x_n \in \{s \in S \mid P(x_{n-1}, s) > 0\}. \\ K_n \mathrel{\mathop:}= K_{n-1} + f_n(x_n) - \sum_{s \in S} f_n(s) P(x_{n-1}, s). \end{array}$

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

Fairness Theorem

Thm. If a state t can be reached from a state s,

$$\Pr(\Box \diamondsuit s \Rightarrow \Box \diamondsuit t) = 1.$$

s is visited Infinitely often

Fairness Theorem

Thm. If a state t can be reached from a state s,

 $\Pr(\Box \diamondsuit s \Rightarrow \Box \diamondsuit t) = 1.$

Fairness Theorem

Thm. If a state t can be reached from a state s,

 $\Pr(\Box \diamondsuit s \Rightarrow \Box \diamondsuit t) = 1.$

Strategy of Skeptic

- Aim: $Pr(\Box \diamondsuit s \land \neg \Box \diamondsuit t) = 0$ (complementary event.)
- In case that P(s,t) > 0,

Strategy of Skeptic

- Aim: $Pr(\Box \diamondsuit s \land \neg \Box \diamondsuit t) = 0$ (complementary event.)
- In case that P(s,t) > 0,

- Skeptic bets on all states except for t
- s is visited infinitely often and t is visited only finitely often
 ⇒ Skeptic wins

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

Simulation

• Probabilistic variant [R. Segala and N. Lynch, 1995]

Def. (weight function)

Let μ and ν be distributions on S_1 and S_2 , respectively. A function $\delta : S_1 \times S_2 \rightarrow [0,1]$ is a weight function for μ and ν w.r.t. $R \subseteq S_1 \times S_2$ if:

- for each $s \in S_1$, $\sum_{s' \in S_2} \delta(s, s') = \mu(s)$,
- for each s' \in S₂, $\sum_{s \in S_1} \delta(s, s') = \nu(s')$, and
- if $\delta(s, s') > 0$ then $(s, s') \in \mathbb{R}$.

Simulation

• Probabilistic variant [R. Segala and N. Lynch, 1995]

Def. (simulation)

R ⊆ S₁× S₂ is a simulation between D₁ = (S₁, P₁) and D₂ = (S₂, P₂) ⇔ there exists a weight function δ_{s_1,s_2} for P(s₁, -) and P(s₂, -) w.r.t. R for each (s₁, s₂) ∈ R.

Thm.

 $R \subseteq S_1 \times S_2 \text{ is a simulation between } D_1 = (S_1, P_1) \text{ and } D_2 = (S_2, P_2)$ $\Rightarrow \forall (s_1, s_2) \in R. \text{ Pr}^{D_1}(s_1 \models E) \leq Pr^{D_2}(s_2 \models E_{\uparrow R})$

Simulation

- Two games: G_1 for (S_1, P_1) and G_2 for (S_2, P_2)
- Suppose that there exists a weight function δ_{s_1,s_2} for $P(s_1, -)$ and $P(s_2, -)$ w.r.t. R.
 - Skeptic's move f^1 in G_1 can be constructed from a weight function δ_{s_1,s_2} and Skeptic's move f^2 in G_2 : $f^1(s) = \sum_{s' \in S_2} \delta_{s_1,s_2}(s, s') f^2(s') / P(s_1, s)$

-
$$\forall s_1 \in S_1$$
. $\exists s_2 \in S_2$. $(s_1, s_2) \in \mathbb{R} \land$
 $f^1(s_1') - \sum_{s \in S_1} f^1(s) \mathbb{P}_1(s_1, s) \ge f^2(s_2') - \sum_{s' \in S_2} f^2(s') \mathbb{P}_2(s_2, s')$

- What model-checking is
- Applications of GTP to model-checking
 - Fairness theorem
 - Simulation
- Conclusion and future work

Conclusion

- Application of GTP to model-checking
 - Formulation of DTMC in terms of GTP
 - Give proofs of some known theorems by using GTP

Future work

- Formulate other models
 - Markov decision process (which have both probabilistic and non-deterministic behavior)
- Use GTP and get model-checking algorithms, models or expressions of specifications

References

- E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999
- Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2007.
- Shota Nakagawa. Games for Discrete-time Markov Chain and Their Application to Verification. BSc thesis, University of Tokyo, 2014.