Possibility & Impossibility of Liquidity Adaptation in Prediction Markets

Rafael Frongillo, Harvard University

Based on joint works with Jacob Abernethy, Miroslav Dudík, Xiaolong Li, and Jennifer Wortman Vaughan

November 14, 2014

Prediction market: offers securities contingent on some future outcome.

Liquidity

Prediction market:

offers securities contingent on some future outcome.

Liquidity:

extent to which traders can profit from knowledge about the future outcome.

I.e., magnitude of market incentives

Liquidity

Prediction market:

offers securities contingent on some future outcome.

Liquidity: extent to which traders can profit from knowledge about the future outcome. *I.e., magnitude of market incentives*

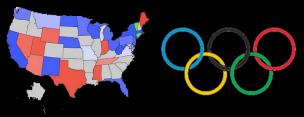
Our goal:

extend current prediction market frameworks to allow liquidity levels to change over time.

This Talk

1 Increasing liquidity

as market activity increases


2 Decreasing liquidity

when information becomes less valuable

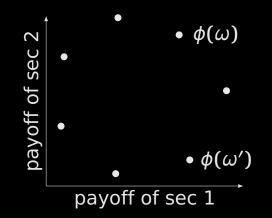
Prolog: Fundamentals

Setting: Complex Markets

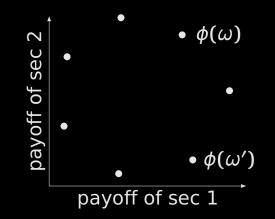
Setting: Complex Markets

events:

pay \$1 iff Bob wins gold @ Men's Downhill Skiing

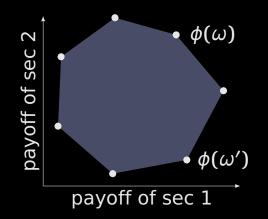

counts:

pay \$1 iff Norway wins at least 3^{\square} gold medals


General Securities

Outcome $\omega \in \Omega$ E.g. $\Omega = \{a \mid assignments of medals to athletes\}$ k securities **Payoffs** encoded by $\phi : \Omega \to \mathbb{R}^k$ payoff of security 1 given ω $\phi(\omega) =$ payoff of security k given ω

Payoff Space



Payoff Space

Payoff space := conv $\phi(\Omega)$

Payoff Space

Payoff space := conv $\phi(\Omega)$

I. Increasing Liquidity

Market maker offers to buy or sell any bundle $\mathbf{r} \in \mathbb{R}^k$ for a cost

Market maker offers to buy or sell any bundle $\mathbf{r} \in \mathbb{R}^k$ for a cost

$$N(\boldsymbol{r}; \boldsymbol{r}_1, \ldots, \boldsymbol{r}_T) \in \mathbb{R}$$

■ Market maker offers to buy or sell any bundle $\mathbf{r} \in \mathbb{R}^k$ for a cost $N(\mathbf{r}; \mathbf{r}_1[.hist]\mathbf{r}_T) \in \mathbb{R}$ Net profit: $\boldsymbol{\phi}(\omega) \cdot \mathbf{r} - N(\mathbf{r}; [hist])$

■ Market maker offers to buy or sell any bundle $\mathbf{r} \in \mathbb{R}^k$ for a cost $N(\mathbf{r}; \mathbf{r}_1, \text{hist})\mathbf{r}_T$) $\in \mathbb{R}$ Net profit: $\boldsymbol{\phi}(\omega) \cdot \mathbf{r} - N(\mathbf{r}; [\text{hist}])$

Our focus: the design of N

WCL – bounded worst-case loss

WCL – bounded worst-case loss ARB – no arbitrage

WCL – bounded worst-case loss ARB – no arbitrage II – information incorporation

- WCL bounded worst-case loss
- ARB no arbitrage
- II information incorporation
- L increasing liquidity

- WCL bounded worst-case loss
- ARB no arbitrage
- II information incorporation
- L increasing liquidity
- **SS** shrinking bid-ask spread

- WCL bounded worst-case loss
- ARB no arbitrage
- II information incorporation
- L increasing liquidity
- **SS** shrinking bid-ask spread

- WCL bounded worst-case loss
- ARB no arbitrage
- II information incorporation
- L increasing liquidity
- **SS** shrinking bid-ask spread

- **II**: $N(\mathbf{r}; [hist] \oplus \mathbf{r}) \ge N(\mathbf{r}; [hist])$
- **SS**: $N(\mathbf{r}; [hist]) + N(-\mathbf{r}; [hist]) \xrightarrow{[hist] \to \infty} 0$

Market makerWCLARBIILSSFixed PriceX✓✓✓✓

$N(\mathbf{r}; [hist]) = \mathbf{\pi} \cdot \mathbf{r}$ (for fixed price vector $\mathbf{\pi}$)

Market makerWCLARBIILSSFixed PriceX✓✓✓✓Potential-based✓✓✓✓✓

$N(\boldsymbol{r};\boldsymbol{q}) = C(\boldsymbol{q}+\boldsymbol{r}) - C(\boldsymbol{q})$

Market makerWCLARBIILSSFixed PriceX✓✓✓✓Potential-based✓✓✓✓✓Profit-charging✓✓✓✓✓[Othman-Sandholm 2012]✓✓✓✓

Market maker WCL ARB II L SS

Fixed Price Potential-based Profit-charging Buy-only [Li-Vaughan 2013]

Q: What other combinations can we achieve?

Q: What other combinations can we achieve?Q: Can we achieve all five??

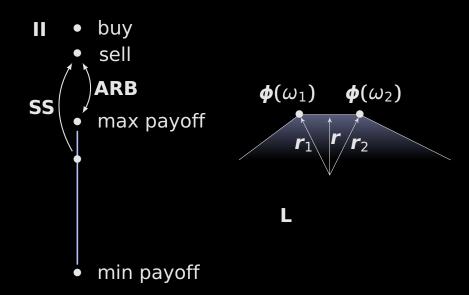
Theorem

No market (φ, N) with at least two securities satisfies WCL, ARB, II, L, & SS.

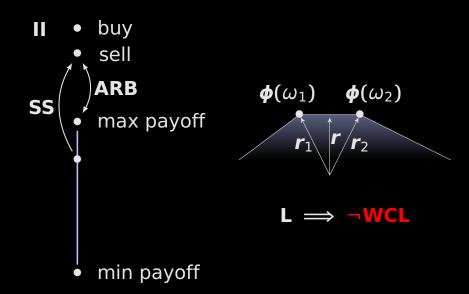
• buy

- max payoff
 - sell

min payoff


ll • buy

- max payoff
 - sell


min payoff

Proof Intuition

No market (ϕ , N) with at least two securities satisfies **WCL**, **ARB**, **II**, **L**, & **SS**.

No market (ϕ , N) with at least two securities satisfies **WCL**, **ARB**, **II**, **L**, & **SS**.

Q: What other combinations can we achieve?*Q:* Can we achieve all five??

No market (ϕ , N) with at least two securities satisfies **WCL**, **ARB**, **II**, **L**, & **SS**.

Q: What other combinations can we achieve?Q: Can we achieve all five?? ×

No market (ϕ , N) with at least two securities satisfies **WCL**, **ARB**, **II**, **L**, & **SS**.

Q: What other combinations can we achieve?Q: Can we achieve all five?? X

Introducing the Volume-Parameterized Market:

 $N(\boldsymbol{r};\boldsymbol{q},\nu) = C(\boldsymbol{q}+\boldsymbol{r},\nu+\|\boldsymbol{r}\|) - C(\boldsymbol{q},\nu)$

Generalizes previous work, still tractable

No market (ϕ , N) with at least two securities satisfies **WCL**, **ARB**, **II**, **L**, & **SS**.

Q: What other combinations can we achieve?Q: Can we achieve all five?? ×

Introducing the Volume-Parameterized Market:

 $N(\boldsymbol{r};\boldsymbol{q},\nu) = C(\boldsymbol{q}+\boldsymbol{r},\nu+\|\boldsymbol{r}\|) - C(\boldsymbol{q},\nu)$

Generalizes previous work, still tractable

Special case: Perspective Market (new)

Perspective Market

CPLX – beyond $\boldsymbol{\phi}(\omega)_i = \mathbf{1}[\omega = \omega_i]$

Market maker WCL ARB II L SS CPLX

X / / / /

Fixed Price Potential-based 🗸 🗸 🗸 🗸 Profit-charging 🗸 🖌 🗡 Buy-only

Perspective Market

CPLX – beyond $\boldsymbol{\phi}(\omega)_i = \mathbf{1}[\omega = \omega_i]$

Market maker WCL ARB II L SS CPLX

X / / / /

Fixed Price Potential-based 🗸 🖌 🖌 🗸 Profit-charging 🗸 🖌 🗡 🗸 🗡 Buy-only

Perspective Market

CPLX – beyond $\boldsymbol{\phi}(\omega)_i = \mathbf{1}[\omega = \omega_i]$

Market maker WCL ARB II L SS CPLX

 \checkmark

J J

V X

V X

Fixed Price X Potential-based \checkmark Profit-charging Buy-only

Perspective \checkmark \checkmark \checkmark \checkmark

L SS CPLX Market maker WCL ARB II

 \checkmark \checkmark \checkmark

1

X

Fixed Price X 1 Potential-based J J J X J Profit-charging V X V Buy-only

Perspective V V X V V

Market maker WCL ARB II L SS CPLX

Fixed Price X Potential-based Profit-charging Buy-only

J X J 🗸 🗡 ✓ X Perspective \checkmark \checkmark \checkmark \checkmark

 \checkmark

____/

Market maker WCL ARB II L SS CPLX

🗸 🗡

____/

X

V X V

✓

X

Fixed Price Potential-based Profit-charging Buy-only

Perspective

Market maker WCL ARB II L SS CPLX

X

X

Fixed Price Potential-based Profit-charging Buy-only

Perspective

II. Decreasing Liquidity

Setting: Complex Markets

events:

pay \$1 iff Bob wins gold @ Men's Downhill Skiing

counts:

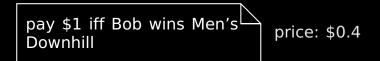
pay \$1 iff Norway wins at least 3^{\square} gold medals

1 Market opens Trading begins

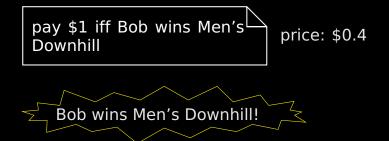
Market opens Trading begins Market closes

3 Outcome revealed All security payoffs given to traders

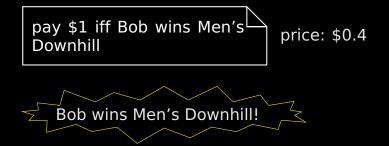
3 Outcome revealed


All security payoffs given to traders

PROBLEM:


Winner of Men's Downhill announced before Women's Downhill takes place!

pay \$1 iff Bob wins Men's└ Downhill


price: \$0.4

Buy buy buy buy buy buy buy... $Price \longrightarrow \$1$, trader makes a huge profit

Buy buy buy buy buy buy buy... $Price \longrightarrow \$1$, trader makes a huge profit

Inefficient allocation of wealth!

Close the market?

Close the market?

Other events to trade on!

Close the market? Other events to trade on! Close the submarket?

Close the market? Other events to trade on! Close the submarket?

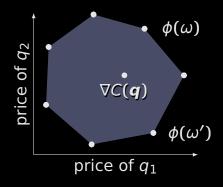
Counts and other related securities!

Close the market? Other events to trade on! Close the submarket? Counts and other related securities!

Need new tools!

Cost Func Market Makers

[Abernethy, Chen, Vaughan '11]


• Cost of bundle r is C(q + r) - C(q)

Instantaneous price of security *i*: $\frac{\partial}{\partial a_i}C(\mathbf{q})$

Cost Func Market Makers

[Abernethy, Chen, Vaughan '11]

- Cost of bundle r is C(q + r) C(q)
- Instantaneous price of security *i*: $\frac{\partial}{\partial q_i}C(\mathbf{q})$

• Let $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \cdots \cup \Omega_N$ partition $\Omega_x = \{assignments where x wins Men's Downhill\}$

• Let $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \cdots \cup \Omega_N$ partition $\Omega_x = \{assignments where x wins Men's Downhill\}$

• At time t, traders learn x $(\omega \in \Omega_x)$ x = winner of Men's Downhill

- Let $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \cdots \cup \Omega_N$ partition $\Omega_x = \{assignments where x wins Men's Downhill\}$
- At time t, traders learn x $(\omega \in \Omega_x)$ x = winner of Men's Downhill
- Market maker knows partition and time t, but *not* Ω_x

GOAL: At time *t*, swap cost function $C \rightarrow \tilde{C}$ so that:

GOAL: At time *t*, swap cost function $C \rightarrow \tilde{C}$ so that: **1** Traders cannot profit from knowing Ω_x

Implicit Submarket Closing

GOAL:

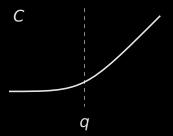
At time t, swap cost function $C \rightarrow \tilde{C}$ so that:

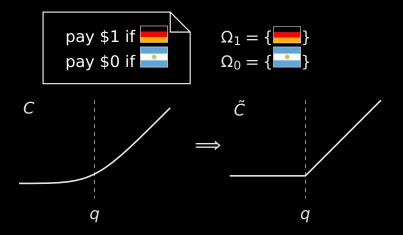
1 Traders cannot profit from knowing Ω_x

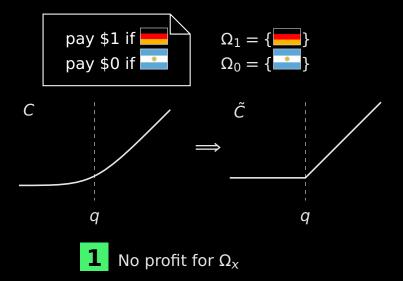
2 Traders rewarded as before for all other info

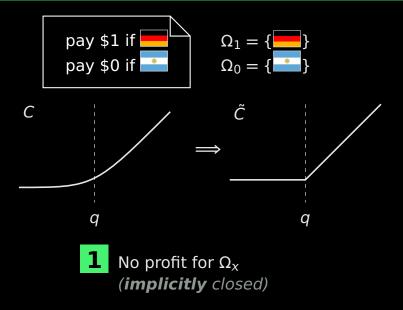
Implicit Submarket Closing

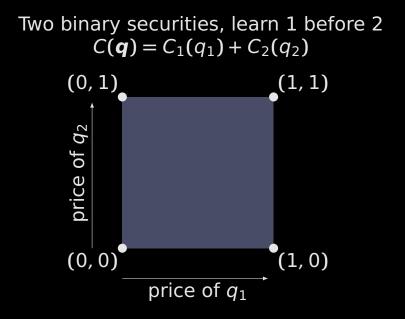
GOAL: At time *t*, swap cost function $C \rightarrow \tilde{C}$ so that: **1** Traders cannot profit from knowing Ω_x **2** Traders rewarded as before for all other info **3** Information already gathered is preserved

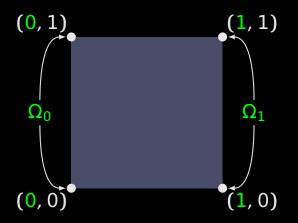

Implicit Submarket Closing

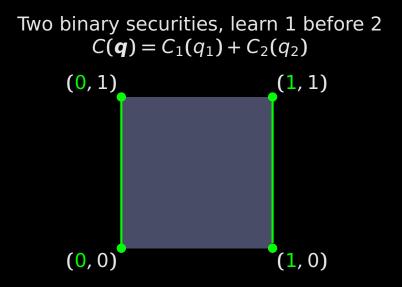

GOAL: At time t, swap cost function C → C̃ so that: 1 Traders cannot profit from knowing Ω_x 2 Traders rewarded as before for all other info 3 Information already gathered is preserved

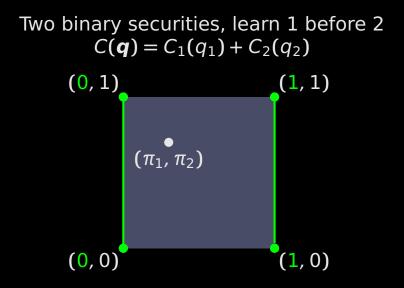

Util_C(I; **q**): max profit a trader could make knowing information I at state **q**

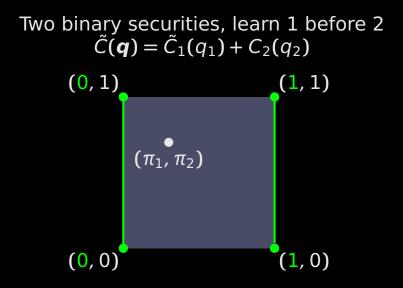


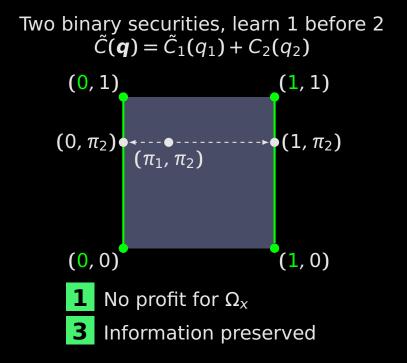


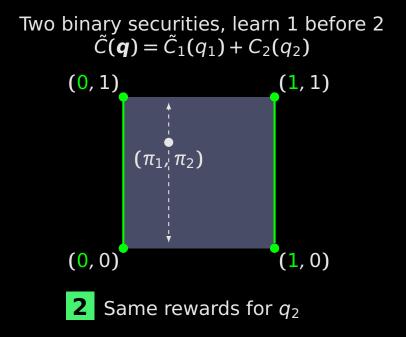


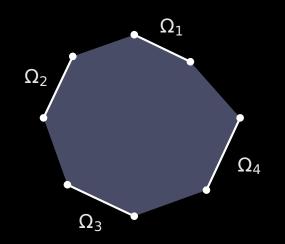

Two binary securities, learn 1 before 2

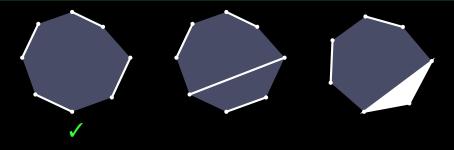

Two binary securities, learn 1 before 2 $C(\mathbf{q}) = C_1(q_1) + C_2(q_2)$



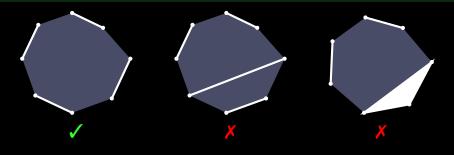

Two binary securities, learn 1 before 2 $C(q) = C_1(q_1) + C_2(q_2)$



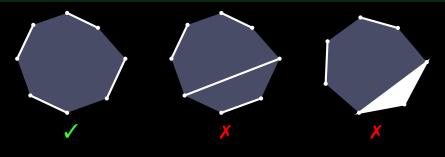




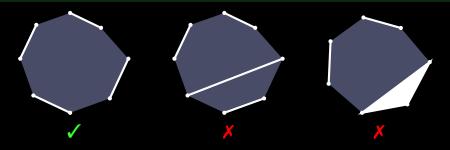
More Complicated Example (?)



Implicit submarket closing is possible if: Conditional price spaces are *faces* of the price space


Implicit submarket closing is possible if: Conditional price spaces are *faces* of the price space

Implicit submarket closing is possible if: Conditional price spaces are *faces* of the price space



Implicit submarket closing is possible if: Conditional price spaces are *faces* of the price space

Holds for any C

Implicit submarket closing is possible if: Conditional price spaces are *faces* of the price space

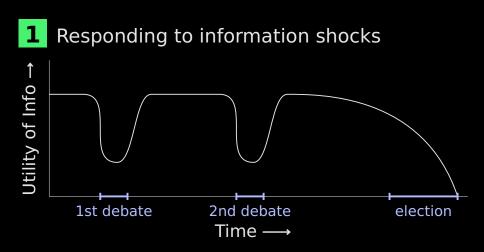
Holds for any C Can always add securities to satisfy

Lemma: Util = Breg Divergence

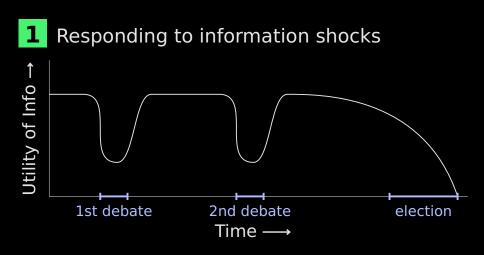
Let $R = C^*$,

 $D_R(\pi, \pi') = R(\pi) - R(\pi') - \nabla R(\pi') \cdot (\pi - \pi')$

1 Util_C(X = x; q) = $\min_{\mu' \in \operatorname{conv} \phi(\Omega_X)} D_R(\mu', \nabla C(q))$

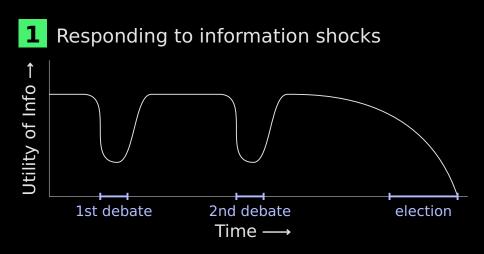

2 Util_C(
$$\mathbb{E}[\phi] = \mu; q$$
) = $D_R(\mu, \nabla C(q))$

3 $\pi_C(X = x; \boldsymbol{q}) = \underset{\boldsymbol{\mu}' \in \operatorname{conv} \phi(\Omega_X)}{\operatorname{argmin}} D_R(\boldsymbol{\mu}', \nabla C(\boldsymbol{q}))$


Gradual Setting

- Implicit submarket closing = sudden drop in utility of info
- Also consider gradual decrease E.g. unemployment statistics for 2014

Future



Future

2 Compare to real market making data

Thanks!!

2 Compare to real market making data