Microsoft Research
 A combinatorial prediction market for the U.S. Elections

Miroslav Dudík

Thanks: S Lahaie, D Pennock, D Rothschild, D Osherson, A Wang, C Herget

OCTOBER 28, 2012

CASSIDY'S COUNT: CAN ROMNEY WIN WITHOUT OHIO?

POSTED BY JOHN CASSIDY

ELECTORAL COLLEGE: 2012
 - leareng obama - lename romety

 Mitt Romney's road to presidency this fall looks narrow on electoral map

By Chris Cillizza, April 29, 2012

It's no secret that former Massachusetts governor Mitt Romney has a narrow path to win the presidency this fall. Nowhere is that reality more apparent than when examining the electoral map on which Romney and President Obama will battle in November.
A detailed analysis of Romney's various paths to the 270 electoral votes he would need to claim the presidency suggests he has a ceiling of

CASSIDY'S COUNT: CAN ROMNEY WIN WITHOUT OHIO?

POSTED BY JOHN CASSIDY

ELECTORAL COLLEGE:

FiveThirty Fight

Nate Silver's Political Calculus

Sentember 12. 2012 8:13 am | 181 Comments

Why Romney is losing must-win Ohio

By Peter Hamby, CNN Political Reporter
updated 5:15 PM EDT, Wed September 26, 2012

POLITICS

DEBATE BUMP PUTS ROMNEY WITHIN A POINT OF OBAMA IN MUST-WIN OHIO

Romney, Obama hit must-win

states

One day before Election Day campaigns se

Jump to video
Virginia remains key to the roadDiscuss
 Related

Mitt Romney's road to presidency this fall looks narrow on electoral map

By Chris Cillizza, April 29, 2012

It's no secret that former Massachusetts governor Mitt Romney has a narrow path to win the presidency this fall. Nowhere is that realitv

Romney treating Ohio as a must-win state

CASSIDY'S COUNT: CAN ROMNEY WIN WITHOUT OHIO?

Ohio: Romney 49\%, Obama 49\% (Romney Must Win VA, FL, And Either OH/WI) RasmussenReports ^ | November 05, 2012

Posted on Tuesday, November 06, 2012 1:37:02 AM by Steelfish

POLITICS
DEBATE BUN WITHIN A P MUST-WIN

Romney states

One day before Electio

Iump to video
Virginia ren

Total 2012 election spending: $\$ 7$ billion

By Jake Harper | Jan $312013 \mid$ 11:47 a.m.
A new estimate from the Federal Election Commission puts total spending for the 2012 election at more than $\$ 7$ billion - $\$ 1$ billion more than previously thought.

New FEC Chair Ellen Weintraub unveiled the latest estimate of the 2012 campaign's record-shattering cost at the agency's first open meeting of 2013, one that saw the departure of Cynthia Bauerly, one of the three Democratic commissioners. Though campaign spending was expected to break records after the Supreme Court's 2010 Citizens United
 decision that opened the door for unlimited contributions, the latest FEC estimate exceeds earlier expectations.

Ohio

s fall looks

r Massachusetts pas a narrow path to win Nowhere is that reality

Youte watching:

Polling

accurate, but costly

limited range of questions
limited timeliness

Polling

accurate, but costly
limited range of questions
limited timeliness

Prediction markets

accurate and cheap (after fixed cost) broad range of questions good timeliness

Outline

Prediction markets: Setting and challenges

Addressing the challenges: constraint generation

Empirical evaluation:
U.S. Elections 2008

Field experiment:
U.S. Elections 2012

Security

= proposition which becomes true or false at some point in future
"Romney will win Florida in Elections 2012"

Security

= proposition which becomes true or false at some point in future
"Romney will win Florida in Elections 2012"

Traders buy shares for some price: $\$ 0.45$ per share
For each share of a security receive:
\$1 if true
\$0 if false

Market implementation: (automated) market maker

market maker
sets prices
if more shares bought, price increases
the price equals the consensus probability of the event

Combinatorial securities:

more information

payoff is a function of common variables e.g., $\mathbf{5 0}$ states elect Obama or Romney

Combinatorial securities:

more information

Obama to lose FL, but win election
Obama to win >8 of 10
Northeastern states

Industry standard: ignore relationships

Treat them as independent markets:
Las Vegas sports betting
Kentucky horse racing
Wall Street stock options
Betfair political betting

Industry standard: ignore relationships

Treat them as independent markets:
Las Vegas sports betting
Kentucky horse racing
Wall Street stock options
Betfair political betting

Problem:

arbitrage opportunities

Arbitrage

trading with guaranteed profits

Arbitrage

trading with guaranteed profits

Arbitrage

trading with guaranteed profits

Arbitrage

trading with guaranteed profits possible if prices incoherent
prices cannot be realized as probabilities

price $\$ 0.40$

price $\$ 0.50$

Arbitrage

trading with guaranteed profits possible if prices incoherent
prices cannot be realized as probabilities

price $\$ 0.40$

price $\$ 0.50$

Pricing without arbitrage: \#P-hard
Industry standard = Ignore arbitrage

Arbitrage

trading with guaranteed profits possible if prices incoherent
prices cannot be realized as probabilities

price $\$ 0.40$

price $\$ 0.50$

Pricing without arbitrage: \#P-hard
Industry standard = Ignore arbitrage
$-$ traders rewarded for computation instead of information
poor information sharing

Our approach:

partial arbitrage removal

Separate pricing (must be fast) and information propagation

- fast pricing in independent markets for tractably small groups of securities
- in parallel: constraint generation to find and remove arbitrage

Embedded in convex optimization (with many nice properties).

Cost-based pricing

(Chen and Pennock 2007)

Setup:
n securities
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state = \#shares sold

Cost-based pricing

(Chen and Pennock 2007)

Setup:
n securities
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state = \#shares sold

$\boldsymbol{q}=(\quad 100$,

400)

Cost-based pricing

(Chen and Pennock 2007)

Setup:
n securities
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state $=$ \#shares sold

$\boldsymbol{q}=(\quad 100$,

400)

Trading:
$r \in \mathbb{R}^{n}$ shares bought by a trader
cost: $C(q+r)-C(q)$

Cost-based pricing

(Chen and Pennock 2007)

Setup:
n securities
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state $=$ \#shares sold

Trading:
$r \in \mathbb{R}^{n}$ shares bought by a trader
$\boldsymbol{r}=($
0 ,

Cost-based pricing

(Chen and Pennock 2007)

Setup:

n securities

$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state $=$ \#shares sold

Trading:
$r \in \mathbb{R}^{n}$ shares bought by a trader
cost: $C(q+r)-C(q)$
state updated: $q^{\prime} \leftarrow q+r$

$$
\boldsymbol{r}=(
$$

$\boldsymbol{q}^{\prime}=(100$,

Cost-based pricing

(Chen and Pennock 2007)

Setup:

n securities

$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state $=$ \#shares sold

Trading:
$r \in \mathbb{R}^{n}$ shares bought by a trader
$\boldsymbol{r}=(\quad 0$,
cost: $C(q+r)-C(q)$
state updated: $q^{\prime} \leftarrow q+r$
$\boldsymbol{q}^{\prime}=\left(\begin{array}{lll}100 & 402\end{array}\right)$
instantaneous prices: $\nabla C(q)$

$$
\boldsymbol{q}=(\quad 100,400)
$$

Cost-based pricing

(Chen and Pennock 2007)

Setup:
n securities
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex cost function
$q \in \mathbb{R}^{n}$ market state = \#shares sold

Trading:
$r \in \mathbb{R}^{n}$ shares bought by a trader
cost: $C(q+r)-C(q)$
state updated: $q^{\prime} \leftarrow q+r$
instantaneous prices: $\nabla C(q)$

$$
\boldsymbol{q}=(\quad 100,1400)
$$

$\boldsymbol{q}^{\prime}=(\quad 100,402)$
$\nabla C(\boldsymbol{q})=(\$ 0.70, \quad \$ 0.75)$

Can we just use existing approaches from graphical models?

MCMC—randomized, slow convergence

 mean field—non-convex belief propagation-lack of convergence
Can we just use existing approaches from graphical models?

MCMC—randomized, slow convergence

 mean field—non-convex belief propagation-lack of convergenceProblematic for pricing:
poor convergence \rightarrow volatility
non-determinism $\quad \rightarrow$ distorted incentives
and user experience

Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

FL priced $\frac{e^{q_{1}}}{e^{q_{1}}+e^{q_{2}}}$

number of shares
bought so far

Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

$$
\text { priced } \frac{e^{q_{1}}}{e^{q_{1}}+e^{q_{2}}}
$$

priced $\frac{e^{q_{2}}}{e^{q_{1}}+e^{q_{2}}}$

Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

$$
\text { priced } \frac{e^{q_{1}}}{e^{q_{1}}+e^{q_{2}}}
$$

priced $\frac{e^{q_{2}}}{e^{q_{1}}+e^{q_{2}}}$
detect incoherence between groups
act as an arbitrageur to restore coherence

Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

$$
\mathrm{FL} \quad \text { priced } \frac{e^{q_{1}}}{e^{q_{1}}+e^{q_{2}}}
$$

priced $\frac{e^{q_{2}}}{e^{q_{1}}+e^{q_{2}}}$
detect incoherence between groups
act as an arbitrageur to restore coherence
caveat:

- difficult to detect incoherence in general
- we detect only a subset of violations

For U.S. Elections: conjunction market

create 50 states (groups of size 2) create all pairs of states (groups of size 4)
for conjunctions of 3 or more, group with opposite disjunction:
$A \wedge B \wedge C$ with $\bar{A} \vee \bar{B} \vee \bar{C}$ (groups of size 2)

For U.S. Elections: conjunction market

create 50 states (groups of size 2) create all pairs of states (groups of size 4)
for conjunctions of 3 or more, group with opposite disjunction:
$A \wedge B \wedge C$ with $\bar{A} \vee \bar{B} \vee \bar{C}$ (groups of size 2)
each group is independent market: fast pricing
in parallel: generate, find, and fix constraints

Local coherence

Pairs:

$$
P[A \wedge B]+P[A \wedge \bar{B}]=P[A]
$$

Larger conjunctions:

$$
P\left[A_{1} \wedge A_{2} \wedge \cdots \wedge A_{m}\right] \leq P\left[A_{i}\right]
$$

Clique constraints

For a disjunction $A_{1} \vee \cdots \vee A_{m}$, pick a subset $A_{i_{1}} \vee \cdots \vee A_{i_{k}}$

$$
P\left[A_{1} \vee \cdots \vee A_{m}\right] \geq P\left[A_{i_{1}} \vee \cdots \vee A_{i_{k}}\right]
$$

Clique constraints

For a disjunction $A_{1} \vee \cdots \vee A_{m}$, pick a subset $A_{i_{1}} \vee \cdots \vee A_{i_{k}}$

$$
\begin{aligned}
P\left[A_{1} \vee \cdots \vee A_{m}\right] & \geq P\left[A_{i_{1}} \vee \cdots \vee A_{i_{k}}\right] \\
& \geq \sum_{j=1}^{k} P\left[A_{i_{j}}\right]-\sum_{1 \leq j<l \leq k} P\left[A_{i_{j}} \wedge A_{i_{l}}\right]
\end{aligned}
$$

Clique constraints

For a disjunction $A_{1} \vee \cdots \vee A_{m}$, pick a subset $A_{i_{1}} \vee \cdots \vee A_{i_{k}}$

$$
\begin{aligned}
P\left[A_{1} \vee \cdots \vee A_{m}\right] & \geq P\left[A_{i_{1}} \vee \cdots \vee A_{i_{k}}\right] \\
& \geq \sum_{j=1}^{k} P\left[A_{i_{j}}\right]-\sum_{1 \leq j<l \leq k} P\left[A_{i_{j}} \wedge A_{i_{l}}\right]
\end{aligned}
$$

\#clique constraints exponential
\rightarrow find only the tightest one!
(approximate submodular maximization via Feige et al. 2007)

Tree constraints

(Galambos and Simoneli 1996)
For a disjunction $A_{1} \vee \cdots \vee A_{m}$,

$$
P\left[A_{1} \vee \cdots \vee A_{m}\right] \leq \sum_{i=1}^{m} P\left[A_{i}\right]
$$

Tree constraints

(Galambos and Simoneli 1996)
For a disjunction $A_{1} \vee \cdots \vee A_{m}$,

$$
P\left[A_{1} \vee \cdots \vee A_{m}\right] \leq \sum_{i=1}^{m} P\left[A_{i}\right]-\sum_{(i, j) \in T} P\left[A_{i} \wedge A_{j}\right]
$$

where T is a spanning tree on nodes $1, \ldots, m$

Does it work?

Tested using a survey of Election 2008:
singletons, pairs, triples
Small data set-compare with exact:
10 states, 30k trades
Large data set-compare with independent:
50 states, 300k trades

Small data set: 10 states

Independent LMSR
Local
Clique
Tree
Clique, Tree
\circ
Δ
$+$
\times
\diamond
\square -

Small data set: 10 states

Independent	\circ	\square
LMSR	Δ	\square
Local	+	\square
Clique	\times	\square
Tree	\diamond	\square
Clique, Tree	∇	$=$

Large data set: 50 states, 300k trades

sensitivity parameter

No really, does it work?

WiseQ Game

(launched September 16, 2012)

WiseQ Game - Elections 2012 (Beta)

MAKE A PREDICTION

President	Senate	Governors	Leaderboards	My Portfolio	My Leagues	Forum	FAQ

WiseQ Game - Elections 2012 (Beta)

WiseQ Game - Elections 2012 (Beta)

WiseQ by numbers

437 active users
3,137 trades
514 distinct bundles traded
10^{33} possible outcomes
44.5 million possible bundles allowed by our menu

17,222 securities in 2,840 small markets 20,983 coherence constraints

Did market absorb information from users?

Did market absorb information from users?

Did users place combinatorial bets?

Did users place combinatorial bets?

Did users place combinatorial bets?

Did users place combinatorial bets?

Did users place combinatorial bets?

Numerical predictions: electoral votes

Numerical predictions: electoral votes

Numerical predictions:

 job numbers

Summary

independent markets + constraints:
tractable and accurate
combinatorial markets can succeed with
moderate numbers of users
even on huge outcome spaces
meaningful forecasts for
challenging, but relevant outcomes:
combinatorial and numerical

