Pricing cones and pricing functionals

Glenn Shafer & Vladimir Vovk

November 11, 2009

Abstract

A pricing functional (also called a superexpectation functional) is determined by a cone of offers, and vice versa.

Let \mathcal{Y} be a fixed set, which we will call the *outcome space*. We call a function $f: \mathcal{Y} \to (-\infty, \infty)$ a *payoff function*, and we write $(-\infty, \infty)^{\mathcal{Y}}$ for the set of all payoff functions.

We call a subset C of $(-\infty, \infty)^{\mathcal{Y}}$ a *pricing cone* if it satisfies the following conditions:

- 1. If $f \in \mathcal{C}$, $g \in (-\infty, \infty)^{\mathcal{Y}}$, and $g \leq f$, then $g \in \mathcal{C}$.
- 2. If $f \in \mathcal{C}$ and $c \in (0, \infty)$, then $cf \in \mathcal{C}$.
- 3. If $f, g \in \mathcal{C}$, then $f + g \in \mathcal{C}$.
- 4. If a sequence f_1, f_2, \ldots of functions in \mathcal{C} increases to a pointwise limit $f \in (-\infty, \infty)^{\mathcal{Y}}$, then $f \in \mathcal{C}$.
- 5. If $f \in \mathcal{C}$, then there exists $y \in \mathcal{Y}$ such that $f(y) \leq 0$.

We write \mathbf{C} for the set of all pricing cones.

We call a function $\mathcal{E}: (-\infty, \infty)^{\mathcal{Y}} \to [-\infty, \infty]$ a *pricing functional* if it satisfies the following conditions:

- 1. If $f, g \in (-\infty, \infty)^{\mathcal{Y}}$ and $f \leq g$, then $\mathcal{E}(f) \leq \mathcal{E}(g)$.
- 2. If $f \in (-\infty, \infty)^{\mathcal{Y}}$ and $c \in (0, \infty)$, then $\mathcal{E}(cf) = c\mathcal{E}(f)$.
- 3. If $f, g \in (-\infty, \infty)^{\mathcal{Y}}$, then $\mathcal{E}(f+g) \leq \mathcal{E}(f) + \mathcal{E}(g)$ (with the right-hand side understood to be ∞ when $\mathcal{E}(f) = \infty$ or $\mathcal{E}(g) = \infty$).
- 4. If $c \in (-\infty, \infty)$, then $\mathcal{E}(c) = c$.
- 5. If a sequence $f_1, f_2, \ldots \in (-\infty, \infty)^{\mathcal{Y}}$ increases to a limit $f \in (-\infty, \infty)^{\mathcal{Y}}$, then

$$\mathcal{E}(f) = \lim_{k \to \infty} \mathcal{E}(f_k).$$

We write \mathbf{E} for the set of all pricing functionals.

Lemma 1. 1. If C is a pricing cone, then the functional $\mathcal{E}^{C} : (-\infty, \infty)^{\mathcal{Y}} \to [-\infty, \infty]$ defined by

$$\mathcal{E}^{\mathcal{C}}(f) = \inf\{\alpha \mid (f - \alpha) \in \mathcal{C}\}\$$

is a pricing functional.

2. If \mathcal{E} is a pricing functional, then the set $\mathcal{C}^{\mathcal{E}}$ defined by

$$\mathcal{C}^{\mathcal{E}} = \{ f \, | \, \mathcal{E}(f) \le 0 \}$$

is a pricing cone.

- 3. If $\mathcal{E} \in \mathbf{E}$, then $\mathcal{E}^{(\mathcal{C}^{\mathcal{E}})} = \mathcal{E}$.
- 4. If $C \in \mathbf{C}$, then $C^{(\mathcal{E}^{C})} = C$.

Here are some examples of pricing cones and the associated pricing functionals:

- 1. Suppose \mathbb{P} is a probability measure on a σ -field of subsets of \mathcal{Y} , and write $\overline{\mathbb{E}}_{\mathbb{P}}(f)$ for the outer expected value of f with respect to \mathbb{P} . Then $\{f \in (-\infty, \infty)^{\mathcal{Y}} \mid \overline{\mathbb{E}}_{\mathbb{P}}(f) \leq 0\}$ is a pricing cone. The corresponding pricing functional is the functional $\overline{\mathbb{E}}_{\mathbb{P}}$.
- 2. Suppose \mathcal{P} is a set of probability measures on \mathcal{Y} , possibly on different σ -algebras. Then $\{f \in (-\infty,\infty)^{\mathcal{Y}} | \overline{\mathbb{E}}_{\mathbb{P}}(f) \leq 0 \text{ for all } \mathbb{P} \in \mathcal{P}\}$ is a pricing cone. The corresponding pricing functional is given by $\mathcal{E}(f) = \sup_{\mathbb{P} \in \mathcal{P}} \overline{\mathbb{E}}_{\mathbb{P}}(f)$.

We call a function $f : \mathcal{Y} \to (-\infty, \infty]$ an *extended payoff function*, and we write $(-\infty, \infty]^{\mathcal{Y}}$ for the set of all extended payoff functions. We can extend a pricing functional to functions on $(-\infty, \infty]^{\mathcal{Y}}$ by taking limits; it will have the same properties.