Hoeffding's inequality in game-theoretic probability

Vladimir Vovk

Peter	Peter	\$0
\$25		
Paul	\$50	

The Game-Theoretic Probability and Finance Project
Answer to Frequently Asked Question \#3
August 19, 2007
Project web site:
http://www.probabilityandfinance.com

Abstract

This note makes the obvious observation that Hoeffding's original proof of his inequality remains valid in the game-theoretic framework. All details are spelled out for the convenience of future reference.

Contents

1 Introduction 1
2 Hoeffding's supermartingale 1
3 Hoeffding's inequality 3
References 4

1 Introduction

The game-theoretic approach to probability was started by von Mises and greatly advanced by Ville [5]; however, it has been overshadowed by Kolmogorov's measure-theoretic approach [3]. The relatively recent book [4] contains game-theoretic versions of several results of probability theory, and it argues that the game-theoretic versions have important advantages over the conventional measure-theoretic versions. However, [4] does not contain any large-deviation inequalities. This note fills the gap by stating the game-theoretic version of Hoeffding's inequality ([2], Theorem 2).

2 Hoeffding's supermartingale

This section presents perhaps the most useful product of Hoeffding's method, a non-negative supermartingale starting from 1 . This supermartingale will easily yield Hoeffding's inequality in the following section.

This is a version of the basic forecasting protocol from [4]:

Game of forecasting bounded variables
Players: Sceptic, Forecaster, Reality
Protocol:
Sceptic announces $\mathcal{K}_{0} \in \mathbb{R}$.
FOR $n=1,2, \ldots$:
Forecaster announces interval $\left[a_{n}, b_{n}\right] \subseteq \mathbb{R}$ and number $\mu_{n} \in(a, b)$.
Sceptic announces $M_{n} \in \mathbb{R}$.
Reality announces $x_{n} \in\left[a_{n}, b_{n}\right]$.
Sceptic announces $\mathcal{K}_{n} \leq \mathcal{K}_{n-1}+M_{n}\left(x_{n}-\mu_{n}\right)$.

On each round n of the game Forecaster outputs an interval $\left[a_{n}, b_{n}\right.$] which, in his opinion, will cover the actual observation x_{n} to be chosen by Reality, and also outputs his expectation μ_{n} for x_{n}. The forecasts are being tested by Sceptic, who is allowed to gamble against them. The expectation μ_{n} is interpreted as the price of a ticket which pays x_{n} after Reality's move becomes known; Sceptic is allowed to buy any number M_{n}, positive, zero, or negative, of such tickets. When x_{n} falls outside $\left[a_{n}, b_{n}\right]$, Sceptic becomes infinitely rich; without loss of generality we include the requirement $x_{n} \in\left[a_{n}, b_{n}\right]$ in the protocol; furthermore, we will always assume that $\mu_{n} \in\left(a_{n}, b_{n}\right)$. Sceptic is allowed to choose his initial capital \mathcal{K}_{0} and is allowed to throw away part of his money at the end of each round.

It is important that the game of forecasting bounded variables is a perfectinformation game: each player can see the other players' moves before making his or her (Forecaster and Sceptic are male and Reality is female) own move; there is no randomness in the protocol.

A process is a real-valued function defined on all finite sequences $\left(a_{1}, b_{1}, \mu_{1}, x_{1}, \ldots, a_{N}, b_{N}, \mu_{N}, x_{N}\right), N=0,1, \ldots$, of Forecaster's and Reality's moves in the game of forecasting bounded variables. If we fix a strategy for Sceptic, Sceptic's capital $\mathcal{K}_{N}, N=0,1, \ldots$, become a function of Forecaster's and Reality's previous moves; in other words, Sceptic's capital becomes a process. The processes that can be obtained this way are called (game-theoretic) supermartingales.

The following theorem is essentially inequality (4.16) in [2].
Theorem 1 For any $h \in \mathbb{R}$, the process

$$
\prod_{n=1}^{N} \exp \left(h\left(x_{n}-\mu_{n}\right)-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)
$$

is a supermartingale.
Proof Assume, without loss of generality, that Forecaster is additionally required to always set $\mu_{n}:=0$. (Adding the same constant to a_{n}, b_{n}, and μ_{n} will not change anything for Sceptic.) Now we have $a_{n}<0<b_{n}$.

It suffices to prove that on round n Sceptic can make a capital of \mathcal{K} into a capital of at least

$$
\mathcal{K} \exp \left(h x_{n}-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)
$$

in other words, that he can obtain a payoff of at least

$$
\exp \left(h x_{n}-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)-1
$$

using the available tickets (paying x_{n} and costing 0). This will follow from the inequality

$$
\exp \left(h x_{n}-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)-1 \leq x_{n} \frac{e^{h b_{n}}-e^{h a_{n}}}{b_{n}-a_{n}} \exp \left(-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)
$$

which can be rewritten as

$$
\begin{equation*}
\exp \left(h x_{n}\right) \leq \exp \left(\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)+x_{n} \frac{e^{h b_{n}}-e^{h a_{n}}}{b_{n}-a_{n}} \tag{1}
\end{equation*}
$$

Our goal is to prove (1). By the convexity of the function exp, it suffices to prove

$$
\frac{x_{n}-a_{n}}{b_{n}-a_{n}} e^{h b_{n}}+\frac{b_{n}-x_{n}}{b_{n}-a_{n}} e^{h a_{n}} \leq \exp \left(\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right)+x_{n} \frac{e^{h b_{n}}-e^{h a_{n}}}{b_{n}-a_{n}}
$$

i.e.,

$$
\frac{b_{n} e^{h a_{n}}-a_{n} e^{h b_{n}}}{b_{n}-a_{n}} \leq \exp \left(\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right),
$$

i.e.,

$$
\begin{equation*}
\ln \left(b_{n} e^{h a_{n}}-a_{n} e^{h b_{n}}\right) \leq \frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}+\ln \left(b_{n}-a_{n}\right) \tag{2}
\end{equation*}
$$

The derivative of the left-hand side of (2) is

$$
\frac{a_{n} b_{n} e^{h a_{n}}-a_{n} b_{n} e^{h b_{n}}}{b_{n} e^{h a_{n}}-a_{n} e^{h b_{n}}}
$$

and the second derivative, after cancellations and regrouping, is

$$
\left(b_{n}-a_{n}\right)^{2} \frac{\left(b_{n} e^{h a_{n}}\right)\left(-a_{n} e^{h b_{n}}\right)}{\left(b_{n} e^{h a_{n}}-a_{n} e^{h b_{n}}\right)^{2}}
$$

The last ratio is of the form $u(1-u)$ where $0<u<1$. Hence it does not exceed $1 / 4$, and the second derivative itself does not exceed $\left(b_{n}-a_{n}\right)^{2} / 4$. Inequality (2) now follows from the second-order Taylor expansion of the left-hand side around $h=0$.

The relation between the game-theoretic and measure-theoretic approaches to probability is described in [4], Chapter 8. Intuitively, the generality of the game-theoretic protocol stems from the fact that Forecaster is not asked to produce a full-blown probability forecast for x_{n} : only the elements $\left(a_{n}, b_{n}, \mu_{n}\right)$ that we really need for our mathematical result enter the game of forecasting bounded variables. Besides, the players are allowed to react to each other moves; in particular, Reality may react to Forecaster's moves and both Reality and Forecaster may react to Sceptic's moves (the latter is important in applications to defensive forecasting: see, e.g., [6]). It is remarkable that many measure-theoretic proofs carry over in a straightforward manner to game-theoretic probability.

3 Hoeffding's inequality

We start from the definition of upper probability, a game-theoretic counterpart (along with lower probability) of the standard measure-theoretic notion of probability. Suppose the game of forecasting bounded variables lasts a known number N of rounds. (See [4] for the general definition.) The sample space is the set of all sequences $\left(a_{1}, b_{1}, \mu_{1}, x_{1}, \ldots, a_{N}, b_{N}, \mu_{N}, x_{N}\right)$ of Forecaster's and Reality's moves in the game. An event is a subset of the sample space. The upper probability of an event E is the infimum of the initial value of non-negative supermartingales that take value at least 1 on E. (See [4], Chapter 8, for a demonstration that this definition agrees with measure-theoretic probability.)

Theorem 1 immediately gives Hoeffding's inequality (cf. [2], the proof of Theorem 2) when combined with the definition of game-theoretic probability:

Corollary 1 Suppose the game of forecasting bounded variables lasts a fixed number N of rounds. If all a_{n} and b_{n} are given in advance and $t>0$ is a
known constant，the upper probability of the event

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mu_{n}\right) \geq t \tag{3}
\end{equation*}
$$

does not exceed $e^{-2 N^{2} t^{2} / C}$ ，where $C:=\sum_{n=1}^{N}\left(b_{n}-a_{n}\right)^{2}$ ．
（The reader will see that it is sufficient for Sceptic to know only C at the start of the game，not the individual a_{n} and b_{n} ．）

Proof The supermartingale of Theorem 1 starts from 1 and achieves

$$
\begin{equation*}
\prod_{n=1}^{N} \exp \left(h\left(x_{n}-\mu_{n}\right)-\frac{h^{2}}{8}\left(b_{n}-a_{n}\right)^{2}\right) \geq \exp \left(h N t-\frac{h^{2}}{8} C\right) \tag{4}
\end{equation*}
$$

on the event（3）．The right－hand side of（4）attains its maximum at $h:=4 N t / C$ ， which gives the statement of the corollary．

Remark The measure－theoretic counterpart of Corollary 1 is sometimes re－ ferred to as the Hoeffding－Azuma inequality，in honour of Kazuoki Azuma（吾妻一興）［1］．The martingale version，however，is also stated in Hoeffding＇s paper （［2］，the end of Section 2）．

Acknowledgments

This work is inspired by a question asked by Yoav Freund．It has been partially supported by EPSRC（grant EP／F002998／1）．

References

［1］Kazuoki Azuma．Weighted sums of certain dependent random variables． Tohoku Mathematical Journal，68：357－367， 1967.
［2］Wassily Hoeffding．Probability inequalities for sums of bounded random variables．Journal of the American Statistical Association，58：13－30， 1963.
［3］Andrei N．Kolmogorov．Grundbegriffe der Wahrscheinlichkeitsrechnung． Springer，Berlin，1933．English translation：Foundations of the Theory of Probability．Chelsea，New York， 1950.
［4］Glenn Shafer and Vladimir Vovk．Probability and Finance：It＇s Only a Game！Wiley，New York， 2001.
［5］Jean Ville．Etude critique de la notion de collectif．Gauthier－Villars，Paris， 1939.
［6］VladimirVovk．Predictions as statements and decisions，The Game－Theoret－ ic Probability and Finance project，http：／／probabilityandfinance．com， Working Paper \＃17，June 2006.

